首页 > 其他分享 >ICESat-2 从ATL08中获取ATL03分类结果

ICESat-2 从ATL08中获取ATL03分类结果

时间:2024-04-27 19:00:48浏览次数:28  
标签:classed ICESat ATL03 atl03 ph ATL08 id

ICESat-2 ATL03数据和ATL08数据的分段距离不一致,ATL08在ATL03的基础上重新分段,并对分段内的数据做处理得到一系列的结果,详情见数据字典:

ATL08 Product Data Dictionary (nsidc.org)

ATL08使用DRAGANN算法对ATL03数据做了去噪处理,并使用分类算法对每个光子进行分类

标志值 标志含义
-1 未分类
0 噪声
1 地面
2 冠层
3 冠顶

ATL08使用ph_segment_idclassed_pc_indx可以和ATL03对应起来。基于此,可从ATL08中获取ATL03每个光子的分类信息。

读取ATL08

import os
import h5py
import re


def read_hdf5_atl08(filename, beam, verbose=False):
    file_id = h5py.File(os.path.expanduser(filename), 'r')

    # 输出HDF5文件信息
    if verbose:
        print(file_id.filename)
        print(list(file_id.keys()))
        print(list(file_id['METADATA'].keys()))
    # 为ICESat-2 ATL08变量和属性分配python字典
    atl08_mds = {}

    # 读取文件中每个输入光束
    beams = [k for k in file_id.keys() if bool(re.match('gt\\d[lr]', k))]
    if beam not in beams:
        print('请填入正确的光束代码')
        return

    atl08_mds['signal_photons'] = {}
    # -- ICESat-2 Geolocation Group
    for key, val in file_id[beam]['signal_photons'].items():
        atl08_mds['signal_photons'][key] = val[:]

    return atl08_mds

映射ATL08

将 ATL08 映射到 ATL03

def get_atl08_mapping(atl03_ph_index_beg, atl03_segment_id, atl08_classed_pc_indx,
                      atl08_classed_pc_flag, atl08_segment_id):
    """
    Function to map ATL08 to ATL03 class photons
    Args:
        atl03_ph_index_beg:
        atl03_segment_id:
        atl08_classed_pc_indx:
        atl08_classed_pc_flag:
        atl08_segment_id:

    Returns:

    """
    # Get ATL03 data
    indsNotZero = atl03_ph_index_beg != 0
    atl03_ph_index_beg = atl03_ph_index_beg[indsNotZero]
    atl03_segment_id = atl03_segment_id[indsNotZero]

    # Find ATL08 segments that have ATL03 segments
    atl03SegsIn08TF, atl03SegsIn08Inds = ismember(atl08_segment_id, atl03_segment_id)

    # Get ATL08 classed indices and values
    atl08classed_inds = atl08_classed_pc_indx[atl03SegsIn08TF]
    atl08classed_vals = atl08_classed_pc_flag[atl03SegsIn08TF]

    # Determine new mapping into ATL03 data
    atl03_ph_beg_inds = atl03SegsIn08Inds
    atl03_ph_beg_val = atl03_ph_index_beg[atl03_ph_beg_inds]
    newMapping = atl08classed_inds + atl03_ph_beg_val - 2

    # Get max size of output array
    sizeOutput = newMapping[-1]

    # Pre-populate all photon classed array with zeroes
    allph_classed = (np.zeros(sizeOutput + 1)) - 1

    # Populate all photon classed array from ATL08 classifications
    allph_classed[newMapping] = atl08classed_vals

    # Return all photon classed array
    return allph_classed

添加分类信息

def add_atl08_classed_flag(filepath_08, beam, atl03_mod):
    """
    添加ATL08分类数据到ATL03中
    Args:
        filepath_08: ATL08数据文件位置
        beam: 波束,与ATL03保持一致
        atl03_mod: ATL03数据

    Returns:
    携带ATL08分类信息
    """
    val_03 = atl03_mod
    val_08 = read_hdf5_atl08(filepath_08, beam)

    # val_03['classed_pc_flag'] = np.zeros_like(val_03['heights']['h_ph']) + np.NaN
    atl03_heights = val_03['heights']['h_ph']

    # -- 分段中的第一个光子(转换为基于0的索引)
    segment_index_begin = val_03['geolocation']['ph_index_beg']
    segment_id = val_03['geolocation']['segment_id']

    # 追踪到ATL03上特定20m Segment_ID的光子的段ID
    ph_segment_id = val_08['signal_photons']['ph_segment_id']

    # 该索引追溯到ATL03上20m segment_id内的特定光子。
    classed_pc_index = val_08['signal_photons']['classed_pc_indx']
    # 每个光子的陆地植被ATBD分类标志为噪声、地面、树冠和树冠顶部。0=噪音,1=地面,2=冠层,或3=冠层顶部
    classed_pc_flag = val_08['signal_photons']['classed_pc_flag']

    # Map ATL08 classifications to ATL03 Photons
    all_ph_classed = get_atl08_mapping(segment_index_begin, segment_id,
                                       classed_pc_index, classed_pc_flag, ph_segment_id)

    if len(all_ph_classed) < len(atl03_heights):
        n_zeros = len(atl03_heights) - len(all_ph_classed)
        zeros = np.zeros(n_zeros)
        all_ph_classed = np.append(all_ph_classed, zeros)

    val_03['classed_pc_flag'] = all_ph_classed

使用姿势

读取ATL03数据代码见:https://www.cnblogs.com/sw-code/p/18161987

from glob import glob

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import MultipleLocator

from readers.add_atl08_info import add_atl08_classed_flag
from readers.get_ATL03_x_atc import get_atl03_x_atc
from readers.read_HDF5_ATL03 import read_hdf5_atl03_beam_h5py


def select_atl03_data(atl03_data, mask):
    """
    选择数据范围
    Args:
        atl03_data: 所有数据
        mask (list): 维度范围
    Returns:
    """
    # 选择范围
    d3 = atl03_data
    subset1 = (d3['heights']['lat_ph'] > min(mask)) & (d3['heights']['lat_ph'] < max(mask))

    x_act = d3['heights']['x_atc'][subset1]
    h = d3['heights']['h_ph'][subset1]
    signal_conf_ph = d3['heights']['signal_conf_ph'][subset1]
    lat = d3['heights']['lat_ph'][subset1]
    lon = d3['heights']['lon_ph'][subset1]
    classed_pc_flag = d3['classed_pc_flag'][subset1]

    return x_act, h, signal_conf_ph, lat, lon, classed_pc_flag


def get_atl03_data(filepath, beam):
    """
    读取ATL03数据,根据维度截取数据
    Args:
        filepath (str): h5文件路径
        beam (str): 光束
    Returns:
        返回沿轨道距离,高程距离,光子置信度
    """
    atl03_file = glob(filepath)
    is2_atl03_mds = read_hdf5_atl03_beam_h5py(atl03_file[0], beam=beam, verbose=False)
    # 添加沿轨道距离到数据中
    get_atl03_x_atc(is2_atl03_mds)
    return is2_atl03_mds


def show_classification(x_origin, y_origin, classification, clz):
    """
    :param clz: -1:未分类, 0:噪声, 1:地形, 2:冠层, 3:冠顶, 4:海洋
    :param classification: 分类数据
    :param y_origin:
    :param x_origin:
    """
    plt.subplots(num=1, figsize=(24, 6))
    ax = plt.gca()
    ax.get_xaxis().get_major_formatter().set_useOffset(False)
    plt.xticks(rotation=270)
    ax.set_xlabel('x_atc, km')
    ax.set_ylabel('h, m')
    ax.xaxis.set_major_locator(MultipleLocator(100))
    colors = ['red', 'black', 'green', 'violet', 'blue', 'grey']
    for flag in clz:
        idx = np.where(classification == flag)
        plt.scatter(x_origin[idx], y_origin[idx], s=5, c=colors[flag])

    plt.show()


if __name__ == '__main__':
    data = {
        'filepath': 'D:\\Users\\SongW\\Documents\\ICESat-2 Data\\ATL03\\ATL03_20200620024106_13070701_005_01.h5',
        'filepath_08': 'D:\\Users\\SongW\\Documents\\ICESat-2 Data\\ATL08\\ATL08_20200620024106_13070701_005_01.h5',
        'beam': 'gt2l',
        'mask': [19.6468, 19.6521]
    }
    atl03_data = atl03_data = get_atl03_data(data['filepath'], data['beam'])
    add_atl08_classed_flag(data['filepath_08'], data['beam'], atl03_data)

    x_origin, y_origin, conf, lat, lon, classed_pc_flag = select_atl03_data(atl03_data, data['mask'])

    show_classification(x_origin, y_origin, classed_pc_flag, [-1, 0, 1, 2, 3])

项目源码

sx-code - icesat-2-atl03 (github.com)

标签:classed,ICESat,ATL03,atl03,ph,ATL08,id
From: https://www.cnblogs.com/sw-code/p/18161991

相关文章

  • ICESat-2 ATL03光子数据读取
    ICESat-2数据处理的方式一般为将光子数据投影到沿轨距离和高程的二维空间。如下图:ATL03数据读取H5是一种数据存储结构,读取原理就是按照该结构获取数据,这里给出两种读取方式。ATL03的数据字典:ATL03ProductDataDictionary(nsidc.org)使用pandasimportwarningsimportpan......