首页 > 其他分享 >实验8-1tensorboard可视化+实验8-2tensorboard案例

实验8-1tensorboard可视化+实验8-2tensorboard案例

时间:2024-04-27 14:33:06浏览次数:38  
标签:compat 2tensorboard name summary v1 1tensorboard 实验 tf scope

版本python3.7 tensorflow版本为tensorflow-gpu版本2.6

实验8-1tensorboard可视化运行结果:

代码:

import tensorflow as tf

# 创建默认图
graph = tf.compat.v1.get_default_graph()

# 定义命名空间
with graph.as_default():
    with tf.name_scope('input'):
        # fetch:就是同时运行多个op的意思
        input1 = tf.constant(3.0, name='A')  # 定义名称,会在tensorboard中代替显示
        input2 = tf.constant(4.0, name='B')
        input3 = tf.constant(5.0, name='C')
    with tf.name_scope('op'):
        # 加法
        add = tf.add(input2, input3)
        # 乘法
        mul = tf.multiply(input1, add)

    with tf.compat.v1.Session() as ss:
        # 默认在当前py目录下的logs文件夹,没有会自己创建
        result = ss.run([mul, add])
        # 使用create_file_writer创建一个文件写入器
        writer = tf.summary.create_file_writer('logs/demo/')
        # 在这个上下文中,所有的tensorboard操作都会被写入logs/demo/目录中
        with writer.as_default():
            # 将计算图写入日志文件
            tf.summary.trace_on(graph=True, profiler=True)
            # 执行计算
            tf.summary.trace_export(name="model_trace", step=0, profiler_outdir='logs/demo/')
        print(result)

 

实验8-2tensorboard案例运行结果:

 代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys
import os
import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data
max_steps = 200  # 最大迭代次数 默认1000
learning_rate = 0.001   # 学习率
dropout = 0.9   # dropout时随机保留神经元的比例

data_dir = os.path.join('data', 'mnist')# 样本数据存储的路径
if not os.path.exists('log'):
    os.mkdir('log')
log_dir = 'log'   # 输出日志保存的路径
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
sess = tf.compat.v1.InteractiveSession()

with tf.name_scope('input'):
    tf.compat.v1.disable_eager_execution()
    x = tf.compat.v1.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.compat.v1.placeholder(tf.float32, [None, 10], name='y-input')
    
with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)
    
def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.random.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

def variable_summaries(var):
    """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
    with tf.name_scope('summaries'):
      # 计算参数的均值,并使用tf.summary.scaler记录
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)

      # 计算参数的标准差
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      # 使用tf.summary.scaler记录记录下标准差,最大值,最小值
      tf.summary.scalar('stddev', stddev)
      tf.summary.scalar('max', tf.reduce_max(var))
      tf.summary.scalar('min', tf.reduce_min(var))
      # 用直方图记录参数的分布
      tf.summary.histogram('histogram', var)
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    """Reusable code for making a simple neural net layer.
    It does a matrix multiply, bias add, and then uses relu to nonlinearize.
    It also sets up name scoping so that the resultant graph is easy to read,
    and adds a number of summary ops.
    """
    # 设置命名空间
    with tf.name_scope(layer_name):
      # 调用之前的方法初始化权重w,并且调用参数信息的记录方法,记录w的信息
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      # 调用之前的方法初始化权重b,并且调用参数信息的记录方法,记录b的信息
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)
      # 执行wx+b的线性计算,并且用直方图记录下来
      with tf.name_scope('linear_compute'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram('linear', preactivate)
      # 将线性输出经过激励函数,并将输出也用直方图记录下来
      activations = act(preactivate, name='activation')
      tf.summary.histogram('activations', activations)

      # 返回激励层的最终输出
      return activations

hidden1 = nn_layer(x, 784, 500, 'layer1')

with tf.name_scope('dropout'):
    tf.compat.v1.disable_eager_execution()
    keep_prob = tf.compat.v1.placeholder(tf.float32)
    tf.compat.v1.summary.scalar('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)
    
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
with tf.name_scope('loss'):
    # 计算交叉熵损失(每个样本都会有一个损失)
    diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
    with tf.name_scope('total'):
      # 计算所有样本交叉熵损失的均值
      cross_entropy = tf.reduce_mean(diff)

tf.summary.scalar('loss', cross_entropy)

with tf.name_scope('train'):
    train_step = tf.compat.v1.train.AdamOptimizer(learning_rate).minimize(
        cross_entropy)
with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      # 分别将预测和真实的标签中取出最大值的索引,弱相同则返回1(true),不同则返回0(false)
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      # 求均值即为准确率
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        
tf.summary.scalar('accuracy', accuracy)
# summaries合并
merged = tf.compat.v1.summary.merge_all()
# 写到指定的磁盘路径中
#删除src路径下所有文件
def delete_file_folder(src):
    '''delete files and folders'''
    if os.path.isfile(src):
        try:
            os.remove(src)
        except:
            pass
    elif os.path.isdir(src):
        for item in os.listdir(src):
            itemsrc=os.path.join(src,item)
            delete_file_folder(itemsrc) 
        try:
            os.rmdir(src)
        except:
            pass
#删除之前生成的log
if os.path.exists(log_dir + '/train'):
    delete_file_folder(log_dir + '/train')
if os.path.exists(log_dir + '/test'):
    delete_file_folder(log_dir + '/test')
train_writer = tf.compat.v1.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.compat.v1.summary.FileWriter(log_dir + '/test')

# 运行初始化所有变量
tf.compat.v1.global_variables_initializer().run()

def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train:
      xs, ys = mnist.train.next_batch(100)
      k = dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

for i in range(max_steps):
    if i % 10 == 0:  # 记录测试集的summary与accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # 记录训练集的summary
      if i % 100 == 99:  # Record execution stats
        run_options = tf.compat.v1.RunOptions(trace_level=tf.compat.v1.RunOptions.FULL_TRACE)
        run_metadata = tf.compat.v1.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
        train_writer.add_summary(summary, i)

train_writer.close()
test_writer.close()

 

标签:compat,2tensorboard,name,summary,v1,1tensorboard,实验,tf,scope
From: https://www.cnblogs.com/daitu66/p/18162021

相关文章

  • 实验三
    实验任务11#include<stdio.h>2#include<stdlib.h>3#include<time.h>4#include<windows.h>5#defineN8067voidprint_text(intline,intcol,chartext[]);//函数声明8voidprint_spaces(intn);//函数声明9voidprint......
  • 实验一 二手平台原型设计
    墨刀、Axure、Mockplus等原型设计工具优缺点分析:一、墨刀优点:在轻量级的移动端原型制作更加迅速,展示更加方便。缺点:价格较贵,不能画流程图,相对于其他两款功能还不是很全面;应用局限性,专注于app原型设计,在后台和网页稍有乏力;归档能力不足,更倾向于链接、二维码形式输出,不能以文档输......
  • 实验三
    TASK1点击查看代码#include<stdio.h>#include<stdlib.h>#include<time.h>#include<windows.h>#defineN80voidprint_text(intline,intcol,chartext[]);//函数声明voidprint_spaces(intn);//函数声明voidprint_blank_lines(intn);//......
  • 实验一———美团APP
    墨刀、Axure、Mockplus等原型设计工具优缺点分析:一、墨刀优点:在轻量级的移动端原型制作更加迅速,展示更加方便。缺点:价格较贵,不能画流程图,相对于其他两款功能还不是很全面;应用局限性,专注于app原型设计,在后台和网页稍有乏力;归档能力不足,更倾向于链接、二维码形式输出,不能以文档输......
  • 实验三
    一、实验题目:软件测试二、实验目的 1、熟悉开发环境下的自动化测试工具;1、利用自动化测试工具进行自动化单元测试。三、实验内容1、选择开发环境,IDEA或PYCHARM任选其一;2、基于所选择的开发环境实现对输入的n个整数进行排序的代码;3、对所编写代码设计测试用例;4、基于所选......
  • 实验3 C语言函数应用编程
    task1.c1#include<stdio.h>2#include<stdlib.h>3#include<time.h>4#include<windows.h>5#defineN8067voidprint_text(intline,intcol,chartext[]);//函数声明8voidprint_spaces(intn);//函数声明9voidpri......
  • 实验三.软件测试
    一、实验题目:软件测试二、实验目的1、熟悉开发环境下的自动化测试工具;1、利用自动化测试工具进行自动化单元测试。三、实验内容1、选择开发环境,IDEA或PYCHARM任选其一;2、基于所选择的开发环境实现对输入的n个整数进行排序的代码;3、对所编写代码设计测试用例;4、基于所选择......
  • 实验3 C语言函数应用编程
    task1#include<time.h>#include<windows.h>#defineN80voidprint_text(intline,intcol,chartext[]);//函数声明voidprint_spaces(intn);//函数声明voidprint_blank_lines(intn);//函数声明intmain(){ intline,col,i; chartext[N]=......
  • 实验三
    一、实验题目:软件测试二、实验目的1、熟悉开发环境下的自动化测试工具;2、利用自动化测试工具进行自动化单元测试。三、实验内容1、选择开发环境,IDEA或PYCHARM任选其一;2、基于所选择的开发环境实现对输入的n个整数进行排序的代码;3、对所编写代码设计测试用例;4、基于所选择......
  • 实验3
    1#include<stdio.h>2#include<stdlib.h>3#include<time.h>4#include<windows.h>5#defineN8067voidprint_text(intline,intcol,chartext[]);89voidprint_spaces(intn);//函数声明1011voidprint_blank_li......