线性结构:一对一
非线性结构:一对多(树),多对多(图)
链表节点:数据,指针域
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define COLOR(b, a) "\033[" #b "m" a "\033[0m" // 字符串的拼接:#b 表示将 b 字符串化
#define RED(a) COLOR(31, a)
#define GREEN(a) COLOR(32, a)
//结构定义:链表节点
typedef struct Node {
int data;
Node *next;
} Node;
//结构定义:链表
typedef struct List {
Node head; // 定义虚拟头节点 (index = -1) for 插入和删除时可以统一操作
int length;
} List;
//结构操作
Node *getNewNode(int val);
List *init();
void clear_node(Node *node);
void clear(List *list);
int insert(List *list, int index, int val);
int erase(List *list, int index);
void output(List *list);
void reverse(List *list);
int main() {
srand(time(0));
#define MAX_N 20
List *list = init();
for (int i = 0; i < MAX_N; i++) {
int op = rand() % 4;
int index = rand() % (list->length + 1);
int val = rand() % 100;
switch (op) {
case 0: {
printf(GREEN("reverse the list!\n"));
reverse(list);
} break;
case 1:
case 2: {
printf("insert %d at %d to the List = %d\n", val, index, insert(list, index, val));
} break;
case 3: {
printf("erase a item at %d from the List = %d\n", index, erase(list, index));
} break;
}
output(list), printf("\n");
}
#undef MAX_N
clear(list);
return 0;
}
//结构操作:获得一个新节点
Node *getNewNode(int val) {
Node *node = (Node *)malloc(sizeof(Node));
node->data = val;
node->next = NULL;
return node;
}
//结构操作:初始化链表
List *init() {
List *list = (List *)malloc(sizeof(List));
list->head.next = NULL;
list->length = 0;
return list;
}
//结构操作:释放一个节点
void clear_node(Node *node) {
if (node == NULL) return;
free(node);
return;
}
//结构操作:销毁链表
void clear(List *list) {
if (list == NULL) return;
Node *node = list->head.next, *post_node;
while (node != NULL) {
post_node = node->next;
clear_node(node);
node = post_node;
}
free(list);
return;
}
//结构操作:插入元素
int insert(List *list, int index, int val) {
if (list == NULL) return 0;
if (index < 0 || index > list->length) return 0;
Node *pre_node = &(list->head);
while (index--) pre_node = pre_node->next;
Node *node = getNewNode(val);
node->next = pre_node->next;
pre_node->next = node;
list->length += 1;
return 1;
}
//结构操作:删除元素
int erase(List *list, int index) {
if (list == NULL) return 0;
if (index < 0 || index >= list->length) return 0;
Node *pre_node = &(list->head);
while (index--) pre_node = pre_node->next;
Node *node = pre_node->next;
pre_node->next = node->next;
clear_node(node);
list->length -= 1;
return 1;
}
//结构操作:输出所有元素
void output(List *list) {
if (list == NULL) return;
for (Node *node = list->head.next; node != NULL; node = node->next) {
printf("%d->", node->data);
}
printf("NULL\n");
return;
}
//结构操作:反转链表
void reverse(List *list) {
if (list == NULL) return;
Node *pre_node = NULL, *node = list->head.next, *post_node;
while (node != NULL) {
post_node = node->next; //暂存
node->next = pre_node; //反转
pre_node = node; //下一个
node = post_node;
}
list->head.next = pre_node;
return;
}
双向链表
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define COLOR(b, a) "\033[" #b "m" a "\033[0m" // 字符串的拼接:#b 表示将 b 字符串化
#define RED(a) COLOR(31, a)
#define GREEN(a) COLOR(32, a)
//结构定义:链表节点
typedef struct Node {
int data;
Node *pre, *next;
} Node;
//结构定义:链表
typedef struct List {
Node head; // 定义虚拟头节点 (index = -1) for 插入和删除时可以统一操作
int length;
} List;
//结构操作
Node *getNewNode(int val);
List *init();
void clear_node(Node *node);
void clear(List *list);
int insert(List *list, int index, int val);
int erase(List *list, int index);
void loutput(List *list);
void routput(List *list);
int main() {
srand(time(0));
#define MAX_N 20
List *list = init();
for (int i = 0; i < MAX_N; i++) {
int op = rand() % 4;
int index = rand() % (list->length + 1);
int val = rand() % 100;
switch (op) {
case 0:
case 1:
case 2: {
printf("insert %d at %d to the List = %d\n", val, index, insert(list, index, val));
} break;
case 3: {
printf("erase a item at %d from the List = %d\n", index, erase(list, index));
} break;
}
loutput(list);
routput(list);
printf("\n");
}
#undef MAX_N
clear(list);
return 0;
}
//结构操作:获得一个新节点
Node *getNewNode(int val) {
Node *node = (Node *)malloc(sizeof(Node));
node->data = val;
node->pre = NULL;
node->next = NULL;
return node;
}
//结构操作:初始化链表
List *init() {
List *list = (List *)malloc(sizeof(List));
list->head.next = NULL;
list->length = 0;
return list;
}
//结构操作:释放一个节点
void clear_node(Node *node) {
if (node == NULL) return;
free(node);
return;
}
//结构操作:销毁链表
void clear(List *list) {
if (list == NULL) return;
Node *node = list->head.next, *post_node;
while (node != NULL) {
post_node = node->next;
clear_node(node);
node = post_node;
}
free(list);
return;
}
//结构操作:插入元素
int insert(List *list, int index, int val) {
if (list == NULL) return 0;
if (index < 0 || index > list->length) return 0;
Node *pre_node = &(list->head);
while (index--) pre_node = pre_node->next;
Node *node = getNewNode(val);
node->next = pre_node->next;
pre_node->next = node;
node->pre = pre_node;
if (node->next != NULL) node->next->pre = node;
list->length += 1;
return 1;
}
//结构操作:删除元素
int erase(List *list, int index) {
if (list == NULL) return 0;
if (index < 0 || index >= list->length) return 0;
Node *pre_node = &(list->head);
while (index--) pre_node = pre_node->next;
Node *node = pre_node->next;
pre_node->next = node->next;
if (node->next != NULL) node->next->pre = pre_node;
clear_node(node);
list->length -= 1;
return 1;
}
//结构操作:从前向后输出所有元素
void loutput(List *list) {
if (list == NULL) return;
printf("loutput: ");
for (Node *node = list->head.next; node != NULL; node = node->next) {
printf("%d->", node->data);
}
printf("null\n");
return;
}
//结构操作:从后向前输出所有元素
void routput(List *list) {
if (list == NULL) return;
printf("routput: ");
Node *node = list->head.next;
//防止没有元素时产生段错误
if (node == NULL) {
printf("null\n");
return;
}
while (node->next) node = node->next;
for (; node != &(list->head); node = node->pre) {
printf("%d->", node->data);
}
printf("head\n");
return;
}
顺序表与链表对比:
顺序表优点:改(知道索引的情况下)查(有序的情况下)方便。连续存储,cache命中的概率高
链表优点:增删方便。非连续存储,无需扩容
标签:node,Node,int,List,list,next,链表,列表 From: https://www.cnblogs.com/Kelvin-Wu/p/16795295.html