首页 > 其他分享 >VOC2012数据集格式转化为YOLO格式

VOC2012数据集格式转化为YOLO格式

时间:2024-04-06 12:58:56浏览次数:26  
标签:xml voc YOLO file path VOC2012 格式 txt os

 下面是 VOC2012数据集的目录格式

├── VOCdevkit 
│         ├── VOC2012   数据集根目录
│               ├── Annotations  标注数据的xml格式数据的目录
│               ├── lImageSets  
│               ├   └── Main     训练集、验证集、测试集的标签 
                └── JPEGImages   图片的目录

 修改路径

首先要修改好数据集的目录:将voc_root = "/data/VOCdevkit"修改为自己voc数据集VOCdevkit的目录下。

# voc数据集根目录以及版本
voc_root = "/data/VOCdevkit"
voc_version = "VOC2012"

 找一个存放保存文件的目录。

# 转换后的文件保存目录
save_file_root = "./my_yolo_dataset"

自己存放的类别文件

# label标签对应json文件
label_json_path = './data/pascal_voc_classes.json'

 json文件下入类别对应好标签。

{
    "aeroplane": 1,
    "bicycle": 2,
    "bird": 3,
    "boat": 4,
    "bottle": 5,
    "bus": 6,
    "car": 7,
    "cat": 8,
    "chair": 9,
    "cow": 10,
    "diningtable": 11,
    "dog": 12,
    "horse": 13,
    "motorbike": 14,
    "person": 15,
    "pottedplant": 16,
    "sheep": 17,
    "sofa": 18,
    "train": 19,
    "tvmonitor": 20
}

 生成的路径

 最后会生产一个my_yolo_dataset文件夹


├── my_yolo_dataset   数据集根目录
    ├── train         训练集数据的目录
        ├── images    jpg格式的图片
        └── labels     TXT文件,存放标签和坐标 例如 19 0.482 0.405333 0.828 0.752
    ├── val          验证集数据的目录
        ├── images    jpg格式的图片
        └── labels     TXT文件,存放标签和坐标 例如 19 0.482 0.405333 0.828 0.752

还会生成一个.name文件,存放着类别

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

 

 全部代码:

"""
本脚本有两个功能:
1.将voc数据集标注信息(.xml)转为yolo标注格式(.txt),并将图像文件复制到相应文件夹
2.根据json标签文件,生成对应names标签(my_data_label.names)
"""
import os
from tqdm import tqdm
from lxml import etree
import json
import shutil


# voc数据集根目录以及版本
voc_root = "/data/VOCdevkit"
voc_version = "VOC2012"

# 转换的训练集以及验证集对应txt文件
train_txt = "train.txt"
val_txt = "val.txt"

# 转换后的文件保存目录
save_file_root = "./my_yolo_dataset"

# label标签对应json文件
label_json_path = './data/pascal_voc_classes.json'

# 拼接出voc的images目录,xml目录,txt目录
voc_images_path = os.path.join(voc_root, voc_version, "JPEGImages")
voc_xml_path = os.path.join(voc_root, voc_version, "Annotations")
train_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", train_txt)
val_txt_path = os.path.join(voc_root, voc_version, "ImageSets", "Main", val_txt)

# 检查文件/文件夹都是否存在
assert os.path.exists(voc_images_path), "VOC images path not exist..."
assert os.path.exists(voc_xml_path), "VOC xml path not exist..."
assert os.path.exists(train_txt_path), "VOC train txt file not exist..."
assert os.path.exists(val_txt_path), "VOC val txt file not exist..."
assert os.path.exists(label_json_path), "label_json_path does not exist..."
if os.path.exists(save_file_root) is False:
    os.makedirs(save_file_root)


def parse_xml_to_dict(xml):
    """
    将xml文件解析成字典形式,参考tensorflow的recursive_parse_xml_to_dict
    Args:
        xml: xml tree obtained by parsing XML file contents using lxml.etree

    Returns:
        Python dictionary holding XML contents.
    """

    if len(xml) == 0:  # 遍历到底层,直接返回tag对应的信息
        return {xml.tag: xml.text}

    result = {}
    for child in xml:
        child_result = parse_xml_to_dict(child)  # 递归遍历标签信息
        if child.tag != 'object':
            result[child.tag] = child_result[child.tag]
        else:
            if child.tag not in result:  # 因为object可能有多个,所以需要放入列表里
                result[child.tag] = []
            result[child.tag].append(child_result[child.tag])
    return {xml.tag: result}


def translate_info(file_names: list, save_root: str, class_dict: dict, train_val='train'):
    """
    将对应xml文件信息转为yolo中使用的txt文件信息
    :param file_names:
    :param save_root:
    :param class_dict:
    :param train_val:
    :return:
    """
    save_txt_path = os.path.join(save_root, train_val, "labels")
    if os.path.exists(save_txt_path) is False:
        os.makedirs(save_txt_path)
    save_images_path = os.path.join(save_root, train_val, "images")
    if os.path.exists(save_images_path) is False:
        os.makedirs(save_images_path)

    for file in tqdm(file_names, desc="translate {} file...".format(train_val)):
        # 检查下图像文件是否存在
        img_path = os.path.join(voc_images_path, file + ".jpg")
        assert os.path.exists(img_path), "file:{} not exist...".format(img_path)

        # 检查xml文件是否存在
        xml_path = os.path.join(voc_xml_path, file + ".xml")
        assert os.path.exists(xml_path), "file:{} not exist...".format(xml_path)

        # read xml
        with open(xml_path) as fid:
            xml_str = fid.read()
        xml = etree.fromstring(xml_str)
        data = parse_xml_to_dict(xml)["annotation"]
        img_height = int(data["size"]["height"])
        img_width = int(data["size"]["width"])

        # write object info into txt
        assert "object" in data.keys(), "file: '{}' lack of object key.".format(xml_path)
        if len(data["object"]) == 0:
            # 如果xml文件中没有目标就直接忽略该样本
            print("Warning: in '{}' xml, there are no objects.".format(xml_path))
            continue

        with open(os.path.join(save_txt_path, file + ".txt"), "w") as f:
            for index, obj in enumerate(data["object"]):
                # 获取每个object的box信息
                xmin = float(obj["bndbox"]["xmin"])
                xmax = float(obj["bndbox"]["xmax"])
                ymin = float(obj["bndbox"]["ymin"])
                ymax = float(obj["bndbox"]["ymax"])
                class_name = obj["name"]
                class_index = class_dict[class_name] - 1  # 目标id从0开始

                # 进一步检查数据,有的标注信息中可能有w或h为0的情况,这样的数据会导致计算回归loss为nan
                if xmax <= xmin or ymax <= ymin:
                    print("Warning: in '{}' xml, there are some bbox w/h <=0".format(xml_path))
                    continue

                # 将box信息转换到yolo格式
                xcenter = xmin + (xmax - xmin) / 2
                ycenter = ymin + (ymax - ymin) / 2
                w = xmax - xmin
                h = ymax - ymin

                # 绝对坐标转相对坐标,保存6位小数
                xcenter = round(xcenter / img_width, 6)
                ycenter = round(ycenter / img_height, 6)
                w = round(w / img_width, 6)
                h = round(h / img_height, 6)

                info = [str(i) for i in [class_index, xcenter, ycenter, w, h]]

                if index == 0:
                    f.write(" ".join(info))
                else:
                    f.write("\n" + " ".join(info))

        # copy image into save_images_path
        path_copy_to = os.path.join(save_images_path, img_path.split(os.sep)[-1])
        if os.path.exists(path_copy_to) is False:
            shutil.copyfile(img_path, path_copy_to)


def create_class_names(class_dict: dict):
    keys = class_dict.keys()
    with open("./data/my_data_label.names", "w") as w:
        for index, k in enumerate(keys):
            if index + 1 == len(keys):
                w.write(k)
            else:
                w.write(k + "\n")


def main():
    # read class_indict
    json_file = open(label_json_path, 'r')
    class_dict = json.load(json_file)

    # 读取train.txt中的所有行信息,删除空行
    with open(train_txt_path, "r") as r:
        train_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
    # voc信息转yolo,并将图像文件复制到相应文件夹
    translate_info(train_file_names, save_file_root, class_dict, "train")

    # 读取val.txt中的所有行信息,删除空行
    with open(val_txt_path, "r") as r:
        val_file_names = [i for i in r.read().splitlines() if len(i.strip()) > 0]
    # voc信息转yolo,并将图像文件复制到相应文件夹
    translate_info(val_file_names, save_file_root, class_dict, "val")

    # 创建my_data_label.names文件
    create_class_names(class_dict)


if __name__ == "__main__":
    main()

标签:xml,voc,YOLO,file,path,VOC2012,格式,txt,os
From: https://blog.csdn.net/weixin_73101319/article/details/137409059

相关文章

  • Linux下载编译ntfs-3g、安装移植、挂载ntfs格式的U盘
    目录前言1、NTFS-3G 简要说明2、NTFS-3G工具安装2.1离线下载ntfs-3g2.2在线下载ntfs-3g(推荐优先) 2.3解压安装ntfs-3g3、NTFS-3G工具移植到文件系统(rootfs)4、NTFS-3G工具挂载 4.1 查看U盘盘符4.2 U盘挂载 5、NTFS-3G源码编译报错问题记录5.1问题1:参......
  • Adobe Media Encoder 2024 v24.3 (macOS, Windows) - 格式转换
    AdobeMediaEncoder2024v24.3(macOS,Windows)-格式转换Acrobat、AfterEffects、Animate、Audition、Bridge、CharacterAnimator、Dimension、Dreamweaver、Illustrator、InCopy、InDesign、LightroomClassic、MediaEncoder、Photoshop、PremierePro、AdobeXD请访......
  • Ueditor富文本回显word文档(doc和docx格式都支持)进行二次编辑,springboot后端
    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档vue+ueditor+springboot,实现word文档上传编辑前言`前端导入word文档(doc和docx格式都支持),Ueditor富文本回显进行二次编辑,目前ueditor项目archived了,实现两种格式的相关材料相对稀缺。解决思路:1.上传word......
  • 【目标检测数据集】香蕉数据集2240张VOC+YOLO格式
    香蕉,是一种广受欢迎的热带水果,以其独特的香甜口感和丰富的营养价值而备受青睐。香蕉外观弯曲,呈长条形,果皮光滑,呈现出鲜亮的黄色,令人垂涎欲滴。在口感上,香蕉肉质细腻,口感绵软,甜而不腻,深受各个年龄段人群的喜爱。无论是作为早餐的一部分,还是作为零食、甜品,香蕉都是绝佳的选择。......
  • 【目标检测数据集】微波炉数据集1547张VOC+YOLO格式
    微波炉是一种现代化的厨房电器,以其高效、便捷的特点深受人们喜爱。它利用微波原理,通过磁控管产生高频振动,使食物中的水分子快速摩擦生热,从而达到快速加热和烹饪食物的效果。微波炉不仅可用于加热剩饭剩菜,还能制作各种美食,如烤鸡翅、蒸鱼等。它的操作简便,只需将食物放入炉内,设......
  • 大型集团企业IT信息化、IT应用蓝图及BI应用蓝图规划规划建设方案146页PPT格式
    原文《大型集团企业IT信息化、IT应用蓝图及BI应用蓝图规划规划建设方案》PPT格式,共146页。来源网络,旨在交流学习,如有侵权,联系速删,更多参考公众号:优享智库一、IT应用蓝图规划IT应用蓝图总图、人力资源管理、竞争情报管理、审计管理、战略管理、投资管理、财务管理、计划预......
  • python的时间格式化
    datetimedatetime.date属性/方法功能说明.max日期最大值类属性.min日期最小值类属性.today()今天的日期类方法.year对象的年属性int类型.month对象的月属性int类型.day对象的天属性int类型.weekday对象的星期属性周一~周日(0~6)......
  • HTML 文本格式化
    ​ HTML文本格式化通常使用一系列特定的标签来改变文本的外观或结构。这些标签可以控制文本的字体、大小、颜色、对齐方式等,也可以用来标记文本的逻辑结构(如段落、标题、列表等)。除了这些基本的格式化标签,HTML还支持通过CSS(级联样式表)来更精细和灵活地控制文本的格式和样式。......
  • 基于深度学习的自动驾驶目标检测系统(网页版+YOLOv8_v7_v6_v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的自动驾驶目标检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实......
  • 基于深度学习的钢材表面缺陷检测系统(网页版+YOLOv8_v7_v6_v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的钢材表面缺陷检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实......