首页 > 其他分享 >代码模板

代码模板

时间:2024-04-03 23:22:26浏览次数:25  
标签:std return int 代码 next ++ vector 模板

代码模板

基本代码模板

#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>

using namespace std;
using i64 = long long;

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    
    

    return 0;
}

数据结构

取模类

template <class T>
T power(T a, i64 b) {
	T res = 1;
	for (; b; b /= 2, a *= a) {
		if (b % 2) {
			res *= a;
		}
	}
	return res;
}
template <int P> struct MInt {
	int x;
	MInt() : x{} {}
	MInt(i64 x_) : x{norm(x_ % getMod())} {}
	static int Mod;
	static int getMod() { return P > 0 ? P : Mod; }
	static void setMod(int Mod_) { Mod = Mod_; }
	int up(int x) const {
		if (x < 0) x += getMod();
		return x;
	}
	int down(int x) const {
		if (x >= getMod()) x -= getMod();
		return x;
	}
	int norm(int x) const {
		return up(down(x));
	}
	int val() const { return x; }
	explicit  operator int() const { return x; }
	MInt operator-() const {
		MInt res; res.x = norm(getMod() - x); return res;
	}
	MInt inv() const {
		assert(x != 0);
		return power(*this, getMod() - 2);
	}
	MInt &operator+=(MInt rhs) & { return x = down(x + rhs.x), *this; }
	MInt &operator-=(MInt rhs) & { return x = up(x - rhs.x), *this; }
	MInt &operator*=(MInt rhs) & { return x = 1LL * x * rhs.x % getMod(), *this; }
	MInt &operator/=(MInt rhs) & { return *this *= rhs.inv(); }
	friend MInt operator+(MInt lhs, MInt rhs) { return lhs += rhs; }
	friend MInt operator-(MInt lhs, MInt rhs) { return lhs -= rhs; }
	friend MInt operator*(MInt lhs, MInt rhs) { return lhs *= rhs; }
	friend MInt operator/(MInt lhs, MInt rhs) { return lhs /= rhs; }
	friend bool operator==(MInt lhs, MInt rhs) { return lhs.val() == rhs.val(); }
	friend  bool operator!=(MInt lhs, MInt rhs) { return lhs.val() != rhs.val(); }
	friend  std::istream &operator>>(std::istream &is, MInt &a) {
		i64 x = 0; is >> x, a = MInt(x); return is;
	}
	friend  std::ostream &operator<<(std::ostream &os, const MInt &a) {
		return os << a.val();
	}
};

constexpr int mod = 1e9 + 7;
using Z = MInt<mod>;

并查集

struct DSU {
    std::vector<int> f, siz;
    DSU(int n) : f(n), siz(n, 1) {
        iota(f.begin(), f.end(), 0);
    }

    int find(int x) {
        while (x != f[x]) {
            x = f[x] = f[f[x]];
        }
        return x;
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    bool merge(int x, int y) {
        x = find(x);
        y = find(y);
        if (x == y) {
            return false;
        }
        siz[x] += siz[y];
        f[y] = x;
        return true;
    }

    int size(int x) {
        return siz[find(x)];
    }
};

树状数组

template <typename T>
struct Fenwick {
	int n;
	std::vector<T> a;
	Fenwick(int n) : n(n), a(n) {}
	void add(int x, T v) {
		for (int i = x; i <= n; i += i & -i) {
			a[i - 1] += v;
		}
	}
	T sum(int x) {
		T ans = 0;
		for (int i = x; i > 0; i -= i & -i) {
			ans += a[i - 1];
		}
		return ans;
	}
	T rangeSum(int l, int r) {
		return sum(r) - sum(l);
	}
};

线段树

template<class Info>
struct SegmentTree {
    int n;
    std::vector<Info> info;
    SegmentTree() {}
    SegmentTree(int n) {
        init(n);
    }
    template<class T>
    SegmentTree(std::vector<T> w) {
        init(w);
    }
    void init(int n) {
        this -> n = n;
        info.resize(4 << std::__lg(n));
    }
    template<class T>
    void init(std::vector<T> w) {
        init(w.size());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = w[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};

struct Info {
    
};

Info operator+(const Info &a, const Info &b) {
    
}

懒标记线段树

template<class Info, class Tag>
struct LazySegmentTree {
    int n;
    std::vector<Info> info;
    std::vector<Tag> tag;
    LazySegmentTree() {}
    LazySegmentTree(int n) {
        init(n);
    }
    template<class T>
    LazySegmentTree(std::vector<T> w) {
        init(w);
    }
    void init(int n) {
        this -> n = n;
        info.resize(4 << std::__lg(n));
        tag.resize(4 << std::__lg(n));
    }
    template<class T>
    void init(std::vector<T> w) {
        init(w.size());
        std::function<void(int, int, int)> build = [&](int p, int l, int r) {
            if (r - l == 1) {
                info[p] = w[l];
                return;
            }
            int m = (l + r) / 2;
            build(2 * p, l, m);
            build(2 * p + 1, m, r);
            pull(p);
        };
        build(1, 0, n);
    }
    void pull(int p) {
        info[p] = info[2 * p] + info[2 * p + 1];
    }
    void apply(int p, const Tag &v) {
        info[p].apply(v);
        tag[p].apply(v);
    }
    void push(int p) {
        if (tag[p].add) {
            apply(2 * p, tag[p]);
            apply(2 * p + 1, tag[p]);
            tag[p] = Tag();
        }
    }
    void modify(int p, int l, int r, int x, const Info &v) {
        if (r - l == 1) {
            info[p] = v;
            return;
        }
        int m = (l + r) / 2;
        push(p);
        if (x < m) {
            modify(2 * p, l, m, x, v);
        } else {
            modify(2 * p + 1, m, r, x, v);
        }
        pull(p);
    }
    void modify(int p, const Info &v) {
        modify(1, 0, n, p, v);
    }
    Info rangeQuery(int p, int l, int r, int x, int y) {
        if (l >= y || r <= x) {
            return Info();
        }
        if (l >= x && r <= y) {
            return info[p];
        }
        int m = (l + r) / 2;
        push(p);
        return rangeQuery(2 * p, l, m, x, y) + rangeQuery(2 * p + 1, m, r, x, y);
    }
    Info rangeQuery(int l, int r) {
        return rangeQuery(1, 0, n, l, r);
    }
    void rangeApply(int p, int l, int r, int x, int y, const Tag &v) {
        if (l >= y || r <= x) {
            return;
        }
        if (l >= x && r <= y) {
            apply(p, v);
            return;
        }
        int m = (l + r) / 2;
        push(p);
        rangeApply(2 * p, l, m, x, y, v);
        rangeApply(2 * p + 1, m, r, x, y, v);
        pull(p);
    }
    void rangeApply(int l, int r, const Tag &v) {
        return rangeApply(1, 0, n, l, r, v);
    }
    template<class F>
    int findFirst(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findFirst(2 * p, l, m, x, y, pred);
        if (res == -1) {
            res = findFirst(2 * p + 1, m, r, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findFirst(int l, int r, F pred) {
        return findFirst(1, 0, n, l, r, pred);
    }
    template<class F>
    int findLast(int p, int l, int r, int x, int y, F pred) {
        if (l >= y || r <= x || !pred(info[p])) {
            return -1;
        }
        if (r - l == 1) {
            return l;
        }
        int m = (l + r) / 2;
        push(p);
        int res = findLast(2 * p + 1, m, r, x, y, pred);
        if (res == -1) {
            res = findLast(2 * p, l, m, x, y, pred);
        }
        return res;
    }
    template<class F>
    int findLast(int l, int r, F pred) {
        return findLast(1, 0, n, l, r, pred);
    }
};

struct Tag {
    
};
struct Info {
    
};
Info operator+(const Info &a, const Info &b) {
    
}

状压RMQ

template<class T,
    class Cmp = std::less<T>>
struct RMQ {
    const Cmp cmp = Cmp();
    static constexpr unsigned B = 64;
    using u64 = unsigned long long;
    int n;
    std::vector<std::vector<T>> a;
    std::vector<T> pre, suf, ini;
    std::vector<u64> stk;
    RMQ() {}
    RMQ(const std::vector<T> &v) {
        init(v);
    }
    void init(const std::vector<T> &v) {
        n = v.size();
        pre = suf = ini = v;
        stk.resize(n);
        if (!n) {
            return;
        }
        const int M = (n - 1) / B + 1;
        const int lg = std::__lg(M);
        a.assign(lg + 1, std::vector<T>(M));
        for (int i = 0; i < M; i++) {
            a[0][i] = v[i * B];
            for (int j = 1; j < B && i * B + j < n; j++) {
                a[0][i] = std::min(a[0][i], v[i * B + j], cmp);
            }
        }
        for (int i = 1; i < n; i++) {
            if (i % B) {
                pre[i] = std::min(pre[i], pre[i - 1], cmp);
            }
        }
        for (int i = n - 2; i >= 0; i--) {
            if (i % B != B - 1) {
                suf[i] = std::min(suf[i], suf[i + 1], cmp);
            }
        }
        for (int j = 0; j < lg; j++) {
            for (int i = 0; i + (2 << j) <= M; i++) {
                a[j + 1][i] = std::min(a[j][i], a[j][i + (1 << j)], cmp);
            }
        }
        for (int i = 0; i < M; i++) {
            const int l = i * B;
            const int r = std::min(1U * n, l + B);
            u64 s = 0;
            for (int j = l; j < r; j++) {
                while (s && cmp(v[j], v[std::__lg(s) + l])) {
                    s ^= 1ULL << std::__lg(s);
                }
                s |= 1ULL << (j - l);
                stk[j] = s;
            }
        }
    } 
    T operator()(int l, int r) {
        if (l / B != (r - 1) / B) {
            T ans = std::min(suf[l], pre[r - 1], cmp);
            l = l / B + 1;
            r = r / B;
            if (l < r) {
                int k = std::__lg(r - l);
                ans = std::min({ans, a[k][l], a[k][r - (1 << k)]}, cmp);
            }
            return ans;
        } else {
            int x = B * (l / B);
            return ini[__builtin_ctzll(stk[r - 1] >> (l - x)) + l];
        }
    }
};

数论

快速幂

i64 power(i64 a, i64 b, i64 p) {
	i64 ans = 1;
	for (; b; b /= 2, a = a * a % p) {
		if (b % 2) {
			ans = ans * a % p;
		}
	}
	return ans;
}

欧拉筛

std::vector<int> minp, primes;

void sieve(int n) {
	minp.assign(n + 1, 0);
	primes.clear();

	for (int i = 2; i <= n; i ++ ) {
		if (minp[i] == 0) {
			minp[i] = i;
			primes.push_back(i);
		}

		for (auto p : primes) {
			if (i * p > n) {
				break;
			}
			minp[i * p] = p;
			if (p == minp[i]) {
				break;
			}
		}
	}
}

欧拉函数

int phi(int n) {
    int res = n;
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            while (n % i == 0) {
                n /= i;
            }
            res = res / i * (i - 1);
        }
    }
    if (n > 1) {
        res = res / n * (n - 1);
    }
    return res;
}

扩展欧几里得

int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    int g = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}

图论

强连通分量缩点(SCC)

struct SCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel, siz;
    int cur, cnt;
    
    SCC() {}
    SCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        siz.resize(n);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
    }
    
    void dfs(int x) {
        dfn[x] = low[x] = cur ++ ;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (dfn[y] == -1) {
                dfs(y);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1) {
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                siz[cnt] ++ ;
                stk.pop_back();
            } while (y != x);
            cnt ++ ;
        }
    }
    
    std::vector<int> work() {
        for (int i = 0; i < n; i++) {
            if (dfn[i] == -1) {
                dfs(i);
            }
        }
        return bel;
    }
};

割边与割边缩点(EBCC)

std::set<std::pair<int, int>> E;
struct EBCC {
    int n;
    std::vector<std::vector<int>> adj;
    std::vector<int> stk;
    std::vector<int> dfn, low, bel;
    int cur, cnt;
    
    EBCC() {}
    EBCC(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        adj.assign(n, {});
        dfn.assign(n, -1);
        low.resize(n);
        bel.assign(n, -1);
        stk.clear();
        cur = cnt = 0;
    }
    
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    void dfs(int x, int p) {
        dfn[x] = low[x] = cur++;
        stk.push_back(x);
        
        for (auto y : adj[x]) {
            if (y == p) {
                continue;
            }
            if (dfn[y] == -1) {
                E.emplace(x, y);
                dfs(y, x);
                low[x] = std::min(low[x], low[y]);
            } else if (bel[y] == -1 && dfn[y] < dfn[x]) {
                E.emplace(x, y);
                low[x] = std::min(low[x], dfn[y]);
            }
        }
        
        if (dfn[x] == low[x]) {
            int y;
            do {
                y = stk.back();
                bel[y] = cnt;
                stk.pop_back();
            } while (y != x);
            cnt++;
        }
    }

    bool isCutEdge(int x, int y) {
        return low[y] > dfn[x];
    }
    
    std::vector<int> work() {
        dfs(0, -1);
        return bel;
    }
    
    struct Graph {
        int n;
        std::vector<std::pair<int, int>> edges;
        std::vector<int> siz;
        std::vector<int> cnte;
    };
    Graph compress() {
        Graph g;
        g.n = cnt;
        g.siz.resize(cnt);
        g.cnte.resize(cnt);
        for (int i = 0; i < n; i++) {
            g.siz[bel[i]]++;
            for (auto j : adj[i]) {
                if (bel[i] < bel[j]) {
                    g.edges.emplace_back(bel[i], bel[j]);
                } else if (i < j) {
                    g.cnte[bel[i]]++;
                }
            }
        }
        return g;
    }
};

树链剖分

struct HLD {
    int n;
    std::vector<int> siz, top, dep, parent, in, out, seq;
    std::vector<std::vector<int>> adj;
    int cur;
    
    HLD() {}
    HLD(int n) {
        init(n);
    }
    void init(int n) {
        this->n = n;
        siz.resize(n);
        top.resize(n);
        dep.resize(n);
        parent.resize(n);
        in.resize(n);
        out.resize(n);
        seq.resize(n);
        cur = 0;
        adj.assign(n, {});
    }
    void addEdge(int u, int v) {
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    void work(int root = 0) {
        top[root] = root;
        dep[root] = 0;
        parent[root] = -1;
        dfs1(root);
        dfs2(root);
    }
    void dfs1(int u) {
        if (parent[u] != -1) {
            adj[u].erase(std::find(adj[u].begin(), adj[u].end(), parent[u]));
        }
        
        siz[u] = 1;
        for (auto &v : adj[u]) {
            parent[v] = u;
            dep[v] = dep[u] + 1;
            dfs1(v);
            siz[u] += siz[v];
            if (siz[v] > siz[adj[u][0]]) {
                std::swap(v, adj[u][0]);
            }
        }
    }
    void dfs2(int u) {
        in[u] = cur ++ ;
        seq[in[u]] = u;
        for (auto v : adj[u]) {
            top[v] = v == adj[u][0] ? top[u] : v;
            dfs2(v);
        }
        out[u] = cur;
    }
    int lca(int u, int v) {
        while (top[u] != top[v]) {
            if (dep[top[u]] > dep[top[v]]) {
                u = parent[top[u]];
            } else {
                v = parent[top[v]];
            }
        }
        return dep[u] < dep[v] ? u : v;
    }
    
    int dist(int u, int v) {
        return dep[u] + dep[v] - 2 * dep[lca(u, v)];
    }
    
    int jump(int u, int k) {
        if (dep[u] < k) {
            return -1;
        }
        
        int d = dep[u] - k;
        
        while (dep[top[u]] > d) {
            u = parent[top[u]];
        }
        
        return seq[in[u] - dep[u] + d];
    }
    
    bool isAncester(int u, int v) {
        return in[u] <= in[v] && in[v] < out[u];
    }
    
    int rootedParent(int u, int v) {
        std::swap(u, v);
        if (u == v) {
            return u;
        }
        if (!isAncester(u, v)) {
            return parent[u];
        }
        auto it = std::upper_bound(adj[u].begin(), adj[u].end(), v, [&](int x, int y) {
            return in[x] < in[y];
        }) - 1;
        return *it;
    }
    
    int rootedSize(int u, int v) {
        if (u == v) {
            return n;
        }
        if (!isAncester(v, u)) {
            return siz[v];
        }
        return n - siz[rootedParent(u, v)];
    }
    
    int rootedLca(int a, int b, int c) {
        return lca(a, b) ^ lca(b, c) ^ lca(c, a);
    }
};

2-SAT

struct TwoSat {
    int n;
    std::vector<std::vector<int>> e;
    std::vector<bool> ans;
    TwoSat(int n) : n(n), e(2 * n), ans(n) {}
    void addClause(int u, bool f, int v, bool g) {
        e[2 * u + !f].push_back(2 * v + g);
        e[2 * v + !g].push_back(2 * u + f);
    }
    bool satisfiable() {
        std::vector<int> id(2 * n, -1), dfn(2 * n, -1), low(2 * n, -1);
        std::vector<int> stk;
        int now = 0, cnt = 0;
        std::function<void(int)> tarjan = [&](int u) {
            stk.push_back(u);
            dfn[u] = low[u] = now ++ ;
            for (auto v : e[u]) {
                if (dfn[v] == -1) {
                    tarjan(v);
                    low[u] = std::min(low[u], low[v]);
                } else if (id[v] == -1) {
                    low[u] = std::min(low[u], dfn[v]);
                }
            }
            if (dfn[u] == low[u]) {
                int v;
                do {
                    v = stk.back();
                    stk.pop_back();
                    id[v] = cnt;
                } while (v != u);
                 ++ cnt;
            }
        };
        for (int i = 0; i < 2 * n; ++i) if (dfn[i] == -1) tarjan(i);
        for (int i = 0; i < n; ++i) {
            if (id[2 * i] == id[2 * i + 1]) return false;
            ans[i] = id[2 * i] > id[2 * i + 1];
        }
        return true;
    }
    std::vector<bool> answer() { return ans; }
};

最大流(MaxFlow)

constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
    
    int n;
    std::vector<_Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
    
    MaxFlow() {}
    MaxFlow(int n) {
        init(n);
    }
    
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n, {});
        cur.resize(n);
        h.resize(n);
    }
    
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
    
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return f - r;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
    
    std::vector<bool> minCut() {
        std::vector<bool> c(n);
        for (int i = 0; i < n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
    
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

字符串

马拉车(Manacher)

std::vector<int> manacher(std::string s) {
    std::string t = "#";
    for (auto c : s) {
        t += c;
        t += '#';
    }
    int n = t.size();
    std::vector<int> r(n);
    for (int i = 0, j = 0; i < n; i++) {
        if (2 * j - i >= 0 && j + r[j] > i) {
            r[i] = std::min(r[2 * j - i], j + r[j] - i);
        }
        while (i - r[i] >= 0 && i + r[i] < n && t[i - r[i]] == t[i + r[i]]) {
            r[i] += 1;
        }
        if (i + r[i] > j + r[j]) {
            j = i;
        }
    }
    return r;
}

kmp

std::vector<int> zFunction(std::string s) {
    int n = s.size();
    std::vector<int> z(n + 1);
    z[0] = n;
    for (int i = 1, j = 1; i < n; i++) {
        z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
            z[i]++;
        }
        if (i + z[i] > j + z[j]) {
            j = i;
        }
    }
    return z;
}

Z函数

std::vector<int> zFunction(std::string s) {
    int n = s.size();
    std::vector<int> z(n + 1);
    z[0] = n;
    for (int i = 1, j = 1; i < n; i++) {
        z[i] = std::max(0, std::min(j + z[j] - i, z[i - j]));
        while (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
            z[i]++;
        }
        if (i + z[i] > j + z[j]) {
            j = i;
        }
    }
    return z;
}

后缀数组(SA)

struct SuffixArray {
    int n;
    std::vector<int> sa, rk, lc;
    SuffixArray(const std::string &s) {
        n = s.length();
        sa.resize(n);
        lc.resize(n - 1);
        rk.resize(n);
        std::iota(sa.begin(), sa.end(), 0);
        std::sort(sa.begin(), sa.end(), [&](int a, int b) {return s[a] < s[b];});
        rk[sa[0]] = 0;
        for (int i = 1; i < n; ++i)
            rk[sa[i]] = rk[sa[i - 1]] + (s[sa[i]] != s[sa[i - 1]]);
        int k = 1;
        std::vector<int> tmp, cnt(n);
        tmp.reserve(n);
        while (rk[sa[n - 1]] < n - 1) {
            tmp.clear();
            for (int i = 0; i < k; ++i)
                tmp.push_back(n - k + i);
            for (auto i : sa)
                if (i >= k)
                    tmp.push_back(i - k);
            std::fill(cnt.begin(), cnt.end(), 0);
            for (int i = 0; i < n; ++i)
                ++cnt[rk[i]];
            for (int i = 1; i < n; ++i)
                cnt[i] += cnt[i - 1];
            for (int i = n - 1; i >= 0; --i)
                sa[--cnt[rk[tmp[i]]]] = tmp[i];
            std::swap(rk, tmp);
            rk[sa[0]] = 0;
            for (int i = 1; i < n; ++i)
                rk[sa[i]] = rk[sa[i - 1]] + (tmp[sa[i - 1]] < tmp[sa[i]] || sa[i - 1] + k == n || tmp[sa[i - 1] + k] < tmp[sa[i] + k]);
            k *= 2;
        }
        for (int i = 0, j = 0; i < n; ++i) {
            if (rk[i] == 0) {
                j = 0;
            } else {
                for (j -= j > 0; i + j < n && sa[rk[i] - 1] + j < n && s[i + j] == s[sa[rk[i] - 1] + j]; )
                    ++j;
                lc[rk[i] - 1] = j;
            }
        }
    }
};

后缀自动机(SAM)

struct SAM {
    static constexpr int ALPHABET_SIZE = 26;
    struct Node {
        int len;
        int link;
        std::array<int, ALPHABET_SIZE> next;
        Node() : len{}, link{}, next{} {}
    };
    std::vector<Node> t;
    SAM() {
        init();
    }
    void init() {
        t.assign(2, Node());
        t[0].next.fill(1);
        t[0].len = -1;
    }
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
    int extend(int p, int c) {
        if (t[p].next[c]) {
            int q = t[p].next[c];
            if (t[q].len == t[p].len + 1) {
                return q;
            }
            int r = newNode();
            t[r].len = t[p].len + 1;
            t[r].link = t[q].link;
            t[r].next = t[q].next;
            t[q].link = r;
            while (t[p].next[c] == q) {
                t[p].next[c] = r;
                p = t[p].link;
            }
            return r;
        }
        int cur = newNode();
        t[cur].len = t[p].len + 1;
        while (!t[p].next[c]) {
            t[p].next[c] = cur;
            p = t[p].link;
        }
        t[cur].link = extend(p, c);
        return cur;
    }
    int extend(int p, char c, char offset = 'a') {
        return extend(p, c - offset);
    }
    
    int next(int p, int x) {
        return t[p].next[x];
    }
    
    int next(int p, char c, char offset = 'a') {
        return next(p, c - 'a');
    }
    
    int link(int p) {
        return t[p].link;
    }
    
    int len(int p) {
        return t[p].len;
    }
    
    int size() {
        return t.size();
    }
};

回文自动机

struct PAM {
    static constexpr int ALPHABET_SIZE = 28;
    struct Node {
        int len;
        int link;
        int cnt;
        std::array<int, ALPHABET_SIZE> next;
        Node() : len{}, link{}, cnt{}, next{} {}
    };
    std::vector<Node> t;
    int suff;
    std::string s;
    PAM() {
        init();
    }
    void init() {
        t.assign(2, Node());
        t[0].len = -1;
        suff = 1;
        s.clear();
    }
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
     
    bool add(char c, char offset = 'a') {
        int pos = s.size();
        s += c;
        int let = c - offset;
        int cur = suff, curlen = 0;
 
        while (true) {
            curlen = t[cur].len;
            if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
                break;  
            cur = t[cur].link;
        }       
        if (t[cur].next[let]) {  
            suff = t[cur].next[let];
            return false;
        }
         
        int num = newNode();
        suff = num;
        t[num].len = t[cur].len + 2;
        t[cur].next[let] = num;
 
        if (t[num].len == 1) {
            t[num].link = 1;
            t[num].cnt = 1;
            return true;
        }
 
        while (true) {
            cur = t[cur].link;
            curlen = t[cur].len;
            if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos]) {
                t[num].link = t[cur].next[let];
                break;
            }       
        }           
 
        t[num].cnt = 1 + t[t[num].link].cnt;
 
        return true;
    }
};
 
PAM pam;

AC自动机

struct AhoCorasick {
    static constexpr int ALPHABET = 26;
    struct Node {
        int len;
        int link;
        std::array<int, ALPHABET> next;
        Node() : link{}, next{} {}
    };
    
    std::vector<Node> t;
    
    AhoCorasick() {
        init();
    }
    
    void init() {
        t.assign(2, Node());
        t[0].next.fill(1);
        t[0].len = -1;
    }
    
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
    
    int add(const std::vector<int> &a) {
        int p = 1;
        for (auto x : a) {
            if (t[p].next[x] == 0) {
                t[p].next[x] = newNode();
                t[t[p].next[x]].len = t[p].len + 1;
            }
            p = t[p].next[x];
        }
        return p;
    }
    
    int add(const std::string &a, char offset = 'a') {
        std::vector<int> b(a.size());
        for (int i = 0; i < a.size(); i++) {
            b[i] = a[i] - offset;
        }
        return add(b);
    }
    
    void work() {
        std::queue<int> q;
        q.push(1);
        
        while (!q.empty()) {
            int x = q.front();
            q.pop();
            
            for (int i = 0; i < ALPHABET; i++) {
                if (t[x].next[i] == 0) {
                    t[x].next[i] = t[t[x].link].next[i];
                } else {
                    t[t[x].next[i]].link = t[t[x].link].next[i];
                    q.push(t[x].next[i]);
                }
            }
        }
    }
    
    int next(int p, int x) {
        return t[p].next[x];
    }
    
    int next(int p, char c, char offset = 'a') {
        return next(p, c - 'a');
    }
    
    int link(int p) {
        return t[p].link;
    }
    
    int len(int p) {
        return t[p].len;
    }
    
    int size() {
        return t.size();
    }
};

标签:std,return,int,代码,next,++,vector,模板
From: https://www.cnblogs.com/pangwt/p/18113702

相关文章

  • ts using/核心技能/三个我/日志/如何做好工作/多写/写简单的代码
    TypeScript5.2的新关键词usinghttps://www.yuque.com/beilo/simpread/1712152587999?singleDoc#《译:TypeScript5.2的新关键词using–云谦的博客》核心技能:构建软件的基础、关键、核心技能是沟通和协作。三个我:过去的我是一个懒惰且粗心的家伙,总是留下一团糟。现在......
  • R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
    全文链接:https://tecdat.cn/?p=35607原文出处:拓端数据部落公众号在生态学研究领域,广义线性混合模型(GeneralizedLinearMixedModels,简称GLMMs)是一种强大的统计工具,能够同时处理固定效应和随机效应,从而更准确地揭示生态系统中复杂关系的本质。随着数据分析技术的不断发展,R语言......
  • 基于深度学习的人脸表情识别系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5等深度学习模型的人脸表情识别系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像......
  • 基于深度学习的智能监考系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的智能监考系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头......
  • 基于深度学习的快递包裹检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:在当今的物流业中,快递包裹的自动化检测技术变得越来越重要。为了提高检测的准确率和效率,基于YOLOv8/v7/v6/v5的快递包裹检测系统成为了研究的热点。本博客深入探讨了这一技术,核心上,我们采用了最先进的YOLOv8算法,并将其与YOLOv7、YOLOv6、YOLOv5进行了综合对比,以展现各版本在快......
  • 基于深度学习的布匹缺陷检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:在本篇博文中,我们深入探讨了基于YOLOv8/v7/v6/v5的布匹缺陷检测系统。核心技术上,本系统采用YOLOv8作为主导算法,并将YOLOv7、YOLOv6、YOLOv5算法进行了整合和性能指标对比分析。我们详细介绍了相关技术在国内外的研究现状、如何处理数据集、算法的基本原理、模型的构建以及训练......
  • 【保姆级教程附代码】Pytorch (.pth) 到 TensorRT (.plan) 模型转化全流程
    整体流程为:.pth->.onnx->.plan(或.trt,二者等价)需要的工具和包:Docker,Pytorch,ONNX,onnxruntime,TensorRT(trtexec和polygraphy).pth到.onnx这里以SwinIR(https://github.com/JingyunLiang/SwinIR)预训练模型为例init_torch_model()函数主要是对模型初始化,这里是......
  • IDEA 中的代码生成器(CodeGenerator)的使用
    代码生成器的使用在IDEA中,为了方便简化代码编写,可以引入代码生成器CodeGenerator类。这个类可以根据数据库中存在的表,自动在IDEA中生成Controller类、Entity类、Mapper类、Sevice类、ServiceImpl扩展类、以及xml文件。使用方法:在项目目录下新建一个common包,直接ctrl......
  • 基于深度学习的番茄新鲜度检测系统(网页版+YOLOv8_v7_v6_v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的番茄新鲜度检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时......
  • 基于深度学习的水下目标检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
    摘要:本文深入研究了基于YOLOv8/v7/v6/v5的水下目标检测系统,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄......