2023年的大型语言模型领域经历了许多快速的发展和创新,发展出了更大的模型规模并且获得了更好的性能,那么我们普通用户是否可以定制我们需要的大型语言模型呢?
首先你需要有硬件的资源,对于硬件来说有2个路径可以选。高性能和低性能,这里的区别就是是功率,因为精度和消息长度直接与参数计数和GPU功率成比例。
定制语言模型的目标应该是在功能和成本之间取得平衡。只有知道自己的需求和环境,才能够选择响应的方案。因为无论你计划如何训练、定制或使用语言模型,都是要花钱的。你能做的唯一免费的事情就是使用一个开源的语言模型。
https://avoid.overfit.cn/post/ebd03e3eb42942a8b13e246a82a3d079
标签:语言,模型,硬件,功率,定制,大型 From: https://www.cnblogs.com/deephub/p/18101189