首页 > 其他分享 >CodeForces 1936E Yet Yet Another Permutation Problem

CodeForces 1936E Yet Yet Another Permutation Problem

时间:2024-03-26 22:11:33浏览次数:27  
标签:return int CodeForces long 1936E static const mint Yet

洛谷传送门

CF 传送门

首先设 \(a_i = \max\limits_{j = 1}^i p_j\),\(b_i = \max\limits_{j = 1}^i q_j\)。

直接容斥,钦定有多少值不同的 \(a_i\) 使得 \(a_i = b_i\)。然后再把钦定的每种值转化成每种值第一次使得 \(a_i = b_i\) 的位置 \(i\)。

也就是说我们现在要钦定一些位置,满足 \(a_i = b_i\),且不存在 \(j \in [1, i - 1]\) 使得 \(a_j = b_j = a_i\)。

考虑 dp,设 \(f_i\) 表示考虑了 \([1, i]\),当前最后一个被钦定的位置是 \(i\),每种方案的容斥系数之和。

转移枚举上一个被钦定的位置 \(j\)(需要满足 \(a_j \ne a_i\))。

  • 若 \(a_i = a_{i - 1}\),说明 \(a_{i - 1} \ne b_{i - 1}\),那么 \(p_i = a_i\)。\([j + 1, i - 1]\) 中相当于从 \(a_i - 1 - j\) 个数中依次选 \(i - j - 1\) 个数填进去,有 \(f_i = -\sum\limits_{j = 0}^{i - 1} [a_j \ne a_i] f_j \frac{(a_i - 1 - j)!}{(a_i - i)!}\)。
  • 若 \(a_i \ne a_{i - 1}\),我们可以从 \([j + 1, i]\) 中选一个位置 \(k\) 使得 \(p_k = a_i\)(方案数为 \(i - j\)),然后再从 \(a_i - 1 - j\) 个数中依次选 \(i - j - 1\) 个数填进空位,有 \(f_i = -\sum\limits_{j = 0}^{i - 1} [a_j \ne a_i] f_j \frac{(a_i - 1 - j)!}{(a_i - i)!} (i - j)\)。

初值为 \(f_0 = 1\)。答案即为 \(\sum\limits_{i = 0}^{n - 1} f_i (n - i)!\)。

暴力转移是 \(O(n^2)\) 的。观察转移形式很像可以分治 NTT 的样子,但是又不是传统的分治 NTT 形式(因为贡献形式是 \(f(i) = \sum f(j) g(a_i - j)\))。不妨先尝试 cdq,每次计算 \([l, mid] \to [mid + 1, r]\) 的贡献。

首先 \(a_j \ne a_i\) 的限制是好解决的,可以直接把 \(a_j = a_i\) 的情况减掉,就是分治过程中对于 \(i \in [l, mid], a_i = a_{mid}\) 的所有 \(i\) 转移到每个 \(j \in [mid + 1, r], a_j = a_{mid}\) 的每个 \(j\) 贡献相同,直接相加即可。

然后我们现在希望处理出 \(g_i = \sum\limits_{j = 0}^{i - 1} f_j (a_i - 1 - j)!\) 和 \(h_i = \sum\limits_{j = 0}^{i - 1} f_j (a_i - 1 - j)! j\)。两者类似,只考虑如何计算 \(g_i\)。

相当于我们现在要让 \([l, mid]\) 的 \(f\) 卷上 \([a_{mid + 1} - 1 - mid, a_r - 1 - l]\) 的阶乘,贡献到一个数组 \(c\),那么 \(g_i\) 得到的贡献是 \(c_{a_i - 1}\)。

因为 \(a\) 序列单调不降且值域为 \([0, n]\),所以复杂度和普通的分治 NTT 一样,是 \(O(n \log^2 n)\)。

code
// Problem: E. Yet Yet Another Permutation Problem
// Contest: Codeforces - Codeforces Round 930 (Div. 1)
// URL: https://codeforces.com/contest/1936/problem/E
// Memory Limit: 1024 MB
// Time Limit: 5000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 1000100;

int n, a[maxn];

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake


// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>
#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, enable_if_t<is_signed<T>::value>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, enable_if_t<is_unsigned<T>::value>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {

namespace internal {

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
    }
    for (int ph = 1; ph <= h; ph++) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint now = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p] * now;
                a[i + offset] = l + r;
                a[i + offset + p] = l - r;
            }
            now *= sum_e[bsf(~(unsigned int)(s))];
        }
    }
}

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
    static constexpr int g = internal::primitive_root<mint::mod()>;
    int n = int(a.size());
    int h = internal::ceil_pow2(n);

    static bool first = true;
    static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
    if (first) {
        first = false;
        mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
        int cnt2 = bsf(mint::mod() - 1);
        mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
        for (int i = cnt2; i >= 2; i--) {
            // e^(2^i) == 1
            es[i - 2] = e;
            ies[i - 2] = ie;
            e *= e;
            ie *= ie;
        }
        mint now = 1;
        for (int i = 0; i <= cnt2 - 2; i++) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
    }

    for (int ph = h; ph >= 1; ph--) {
        int w = 1 << (ph - 1), p = 1 << (h - ph);
        mint inow = 1;
        for (int s = 0; s < w; s++) {
            int offset = s << (h - ph + 1);
            for (int i = 0; i < p; i++) {
                auto l = a[i + offset];
                auto r = a[i + offset + p];
                a[i + offset] = l + r;
                a[i + offset + p] =
                    (unsigned long long)(mint::mod() + l.val() - r.val()) *
                    inow.val();
            }
            inow *= sum_ie[bsf(~(unsigned int)(s))];
        }
    }
}

}  // namespace internal

template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};
    if (std::min(n, m) <= 60) {
        if (n < m) {
            std::swap(n, m);
            std::swap(a, b);
        }
        std::vector<mint> ans(n + m - 1);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                ans[i + j] += a[i] * b[j];
            }
        }
        return ans;
    }
    int z = 1 << internal::ceil_pow2(n + m - 1);
    a.resize(z);
    internal::butterfly(a);
    b.resize(z);
    internal::butterfly(b);
    for (int i = 0; i < z; i++) {
        a[i] *= b[i];
    }
    internal::butterfly_inv(a);
    a.resize(n + m - 1);
    mint iz = mint(z).inv();
    for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
    return a;
}

template <unsigned int mod = 998244353, class T, enable_if_t<is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    using mint = static_modint<mod>;
    std::vector<mint> a2(n), b2(m);
    for (int i = 0; i < n; i++) {
        a2[i] = mint(a[i]);
    }
    for (int i = 0; i < m; i++) {
        b2[i] = mint(b[i]);
    }
    auto c2 = convolution(move(a2), move(b2));
    std::vector<T> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        c[i] = c2[i].val();
    }
    return c;
}

std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                      const std::vector<long long>& b) {
    int n = int(a.size()), m = int(b.size());
    if (!n || !m) return {};

    static constexpr unsigned long long MOD1 = 754974721;  // 2^24
    static constexpr unsigned long long MOD2 = 167772161;  // 2^25
    static constexpr unsigned long long MOD3 = 469762049;  // 2^26
    static constexpr unsigned long long M2M3 = MOD2 * MOD3;
    static constexpr unsigned long long M1M3 = MOD1 * MOD3;
    static constexpr unsigned long long M1M2 = MOD1 * MOD2;
    static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;

    static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
    static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
    static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;

    auto c1 = convolution<MOD1>(a, b);
    auto c2 = convolution<MOD2>(a, b);
    auto c3 = convolution<MOD3>(a, b);

    std::vector<long long> c(n + m - 1);
    for (int i = 0; i < n + m - 1; i++) {
        unsigned long long x = 0;
        x += (c1[i] * i1) % MOD1 * M2M3;
        x += (c2[i] * i2) % MOD2 * M1M3;
        x += (c3[i] * i3) % MOD3 * M1M2;
        // B = 2^63, -B <= x, r(real value) < B
        // (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
        // r = c1[i] (mod MOD1)
        // focus on MOD1
        // r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
        // r = x,
        //     x - M' + (0 or 2B),
        //     x - 2M' + (0, 2B or 4B),
        //     x - 3M' + (0, 2B, 4B or 6B) (without mod!)
        // (r - x) = 0, (0)
        //           - M' + (0 or 2B), (1)
        //           -2M' + (0 or 2B or 4B), (2)
        //           -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
        // we checked that
        //   ((1) mod MOD1) mod 5 = 2
        //   ((2) mod MOD1) mod 5 = 3
        //   ((3) mod MOD1) mod 5 = 4
        long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
        if (diff < 0) diff += MOD1;
        static constexpr unsigned long long offset[5] = {
            0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
        x -= offset[diff % 5];
        c[i] = x;
    }

    return c;
}

}  // namespace atcoder

using atcoder::modint998244353;
using atcoder::convolution;

typedef modint998244353 mint;
typedef vector<mint> poly;

mint fac[maxn], ifac[maxn], f[maxn], g[maxn], h[maxn];

void cdq(int l, int r) {
	if (l == r) {
		if (l) {
			if (a[l] == a[l - 1]) {
				f[l] = -g[l] * ifac[a[l] - l];
			} else {
				f[l] = -g[l] * ifac[a[l] - l] * l + h[l] * ifac[a[l] - l];
			}
		}
		return;
	}
	int mid = (l + r) >> 1;
	cdq(l, mid);
	if (a[mid] == a[mid + 1]) {
		mint s1 = 0, s2 = 0;
		for (int i = mid; i >= l && a[i] == a[mid]; --i) {
			s1 += f[i] * fac[a[i] - 1 - i];
			s2 += f[i] * fac[a[i] - 1 - i] * i;
		}
		for (int i = mid + 1; i <= r && a[i] == a[mid]; ++i) {
			g[i] -= s1;
			h[i] -= s2;
		}
	}
	poly A(mid - l + 1), B(a[r] - l - (a[mid + 1] - mid) + 1);
	for (int i = l; i <= mid; ++i) {
		A[i - l] = f[i];
	}
	for (int i = a[mid + 1] - 1 - mid; i <= a[r] - 1 - l; ++i) {
		B[i - (a[mid + 1] - 1 - mid)] = fac[i];
	}
	poly res = convolution(A, B);
	for (int i = mid + 1; i <= r; ++i) {
		int j = a[i] - 1 - l - (a[mid + 1] - 1 - mid);
		assert(j >= 0 && j < (int)res.size());
		g[i] += res[j];
	}
	A = poly(mid - l + 1);
	for (int i = l; i <= mid; ++i) {
		A[i - l] = f[i] * i;
	}
	res = convolution(A, B);
	for (int i = mid + 1; i <= r; ++i) {
		int j = a[i] - 1 - l - (a[mid + 1] - 1 - mid);
		assert(j >= 0 && j < (int)res.size());
		h[i] += res[j];
	}
	cdq(mid + 1, r);
}

void solve() {
	scanf("%d", &n);
	fac[0] = 1;
	for (int i = 1; i <= n; ++i) {
		scanf("%d", &a[i]);
		a[i] = max(a[i - 1], a[i]);
		fac[i] = fac[i - 1] * i;
	}
	ifac[n] = fac[n].inv();
	for (int i = n - 1; ~i; --i) {
		ifac[i] = ifac[i + 1] * (i + 1);
	}
	for (int i = 0; i <= n + 3; ++i) {
		f[i] = g[i] = h[i] = 0;
	}
	f[0] = 1;
	cdq(0, n - 1);
	mint ans = fac[n];
	for (int i = 1; i < n; ++i) {
		// f[i] = 0;
		// for (int j = 0; j < i; ++j) {
			// if (a[j] == a[i]) {
				// continue;
			// }
			// f[i] = (f[i] - f[j] * fac[a[i] - 1 - j] % mod * ifac[a[i] - i] % mod * (a[i] == a[i - 1] ? 1 : i - j) % mod + mod) % mod;
		// }
		ans += f[i] * fac[n - i];
	}
	printf("%d\n", ans.val());
}

int main() {
	int T = 1;
	scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}

标签:return,int,CodeForces,long,1936E,static,const,mint,Yet
From: https://www.cnblogs.com/zltzlt-blog/p/18097745

相关文章

  • Codeforces Round 936 (Div. 2) E
    SofiaandStrings题面翻译\(t\)组数据。每一次测试,有长度为\(n\)的序列\(s\),长度为\(m\)的序列\(t\)。你可以对\(s\)进行两种操作:删除\(s_i,1\lei\le|s|\)(\(s\)从\(1\)开始标号).将\(s_l,s_{l+1},\dots,s_r\)排序(\(1\lel\ler\le|s|\))。上面\(|s|......
  • CF1935 Codeforces Round 932 (Div. 2)
    C.MessengerinMAC给两个数组a,b和一个整数L.寻找一个关于a,b下标的序列p,使得\(\suma_{p_i}+\sum|b_{p_i}-b_{p_{i+1}}|\leqL\)SolutionKey1:按照b从小到大排序一定是最优的.Key2:固定\(b_l\),\(b_r\),那么\(\sum^r_l|b_{p_i}-b_{p_{i+1}}|=b_r-b_l......
  • 加载权重时候出现:not created its variables yet
    ValueError:UnabletoloadweightssavedinHDF5formatintoasubclassedModelwhichhasnotcreateditsvariablesyet.CalltheModelfirst,thenloadtheweights.这个错误是由于尝试将保存在HDF5格式中的权重加载到一个还未创建其变量的子类模型中所导致的......
  • codeforces div3 935
    Problem-E-Codeforces题解:一道二分糖题首先我们先在原序列跑一遍题目给的二分,然后跑出最后的l点我们稍微思考一下,这个l这个点一定小于或者等于x为什么呢一个在这个二分里,如果最后的点是大于x的那么必定被r拿走,因为判断上l只能接收比x小的地点所以我们知道l以后,要么就是l=......
  • codeforces div_2 936 题解报告
    codeforcesdiv_2936题解报告比赛链接:https://codeforces.com/contest/1946A.MedianofanArray做法tag:签到题目翻译给定一个长度为\(n\)的数组\(a\),记数组中非降序排列中第\({\lceil\fracn2\rceil}\)个数是数组a的中位数。我们可以以下操作。选择一个数\(i\in[......
  • Codeforces Round 936 (Div. 2) D
    AB没什么好说的C二分答案,写的还是不够快,但是也很好了。D的问题有点大。我好像一直有一个不对的贪心再用,对于二进制的。就是我会觉得一堆树或起来小于一个数字,这种限制是每个数字都小于那个数字就可以了。但是实际上这就是一个很明显错误的贪心。然后另一个反映就是,对于二进......
  • Codeforces Round 936 (Div. 2)
    CodeforcesRound936(Div.2) A.MedianofanArray题意:给一串数字,每次操作可以将一个数字+1,求最少多少次操作使得数组中位数增加思路:分奇偶讨论:1:如果是奇数的话看中间的数字,如果中间的数字只出现过一次,那么次数就是1,否则看从中间位到右边最后出现这个数字的地方看这个数......
  • 每日一题 第二十六期 Codeforces Round 936 (Div. 2)
    A.MedianofanArraytimelimitpertest:1secondmemorylimitpertest:256megabytesinput:standardinputoutput:standardoutputYouaregivenanarrayaa......
  • 每日一题 第二十七期 Codeforces Round 936 (Div. 2)
    B.MaximumSumtimelimitpertest:1secondmemorylimitpertest:256megabytesinput:standardinputoutput:standardoutputYouhaveanarrayaaaof......
  • Codeforces Round 935 (Div. 3)
    A-SettingupCamp思路:判断c能否填充b让b为3的倍数查看代码voidsolve(){inta,b,c;cin>>a>>b>>c;intans=a+b/3;b%=3;if(b>0&&b+c<3)cout<<-1<<'\n';else{ans+=(b+c+2)/3;c......