首页 > 其他分享 >聊聊大模型的微调实现及其应用

聊聊大模型的微调实现及其应用

时间:2024-03-15 23:45:04浏览次数:28  
标签:基于 训练 模型 微调 开源 聊聊 数据

微调框架概述

模型的微调有多种方式,对于入门的来说,一般都是基于官方的文档微调;最近发现很多开源库,其目的就是支持应用多种微调策略来微调模型,简化模型的微调门槛。比如 ChatGLM-Efficient-TuningLLaMA-Factory。其架构逻辑如下:

最近试玩了这两个框架,个人觉得蛮好的,先不说实际的调试效果,这取决于多种因素,总的来说还是很方便快捷的。方便快捷的基于多种微调策略调试LLM;同时支持多种数据集类型。

LLaMA-Factory

这个开源库相比较其余的库,更全面,更方便。有如下几点我是比较喜欢的。

  1. 训练方法
    1. 如图,多种训练方法都支持,很全面。不过这里的预训练,我理解为是增量预训练;即准备大量的文本数据训练。
    2. 支持全参数、部分参数、LoRA等策略微调。
    3. 降低门槛,一键训练。对于学习来说,可以增加知识面及使用。

image.png

  1. 数据集
    1. 支持多种数据集:增量预训练数据集、指令微调数据集、偏好数据集;在官方文档都是有说明的。
    2. 每次微调前,我都需要斟酌数据集的准备、格式等;但开源库已经准备的很齐全而且各种场景的数据格式都有,直接参考即可;比如单轮对话、多轮对话、指令格式等等。这就极大的方便了数据集的准备。
  2. 其它
    1. 当然还有分布式训练、web界面操作等等

ChatGLM-Finetuning

Finetuning 是专门基于GLM系列的微调库,我个人也试用,还是很方便快速的,而且文档比较清晰,只是在部署时比较简陋,但对于要学习了解微调及LLM一些原理来说,还是很适合入门钻研的。

应用

目前绝大多数的大模型都是基于基座模型(GLM、QWen、LlaMa、BaiChuan)等微调训练而来,不过实现的逻辑却是有多种,要么基于官方的微调文档,要么基于开源微调库实现。CareGPT 就是基于开源微调库LLaMA-Factory实现的医疗领域大模型。其架构设计如下:

在其架构设计中,有两个部分比较值得关注:

  1. 微调框架的集成
    1. 通过集成了微调框架,调用底层具备的能力,准备多种格式的数据集微调模型。
  2. 数据开放
    1. 基于开源医疗数据集,准备增量预训练预料、指令监督预料、SFT预料等等;扩充基座模型的领域知识能力。

总结

基于个人使用及学习的角度,介绍了微调框架的概述及其应用。在这里面的道道还是蛮多的,有一定的大模型知识再基于这些库去做参考去做应用,将极大的降低LLM的应用门槛。更有甚者可以了解底层的实现逻辑。

标签:基于,训练,模型,微调,开源,聊聊,数据
From: https://www.cnblogs.com/chinasoft/p/18076505

相关文章

  • R语言弹性网络Elastic Net正则化惩罚回归模型交叉验证可视化
    原文链接:http://tecdat.cn/?p=26158原文出处:拓端数据部落公众号 弹性网络正则化同时应用L1范数和L2范数正则化来惩罚回归模型中的系数。为了在R中应用弹性网络正则化。在 LASSO回归中,我们为alpha参数设置一个'1'值,并且在岭回归中,我们将'0'值设置为其alpha参数......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的火焰与烟雾检测系统详解(深度学习模型+UI界面升级版
    摘要:本研究详细介绍了一种集成了最新YOLOv8算法的火焰与烟雾检测系统,并与YOLOv7、YOLOv6、YOLOv5等早期算法进行性能评估对比。该系统能够在包括图像、视频文件、实时视频流及批量文件中准确识别火焰与烟雾。文章深入探讨了YOLOv8算法的原理,提供了Python实现代码、训练数据集,以及......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的癌症图像检测系统(深度学习模型+UI界面代码+训练数
    摘要:本文介绍了一种基于深度学习的癌症图像检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的摘要:本篇博客深入介绍了如何借助深度学习技术开发癌症图像检测系统,以提高医疗诊断的精度和速度。系......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的车型识别与计数系统(深度学习模型+UI界面代码+训练
    摘要:开发车型识别与计数系统对于提高交通管理效率和城市规划具有重要意义。本篇博客详细介绍了如何利用深度学习构建一个车型识别与计数系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并结合了YOLOv7、YOLOv6、YOLOv5的对比,给出了不同模型之间的性能指标如mAP、F1Score......
  • deepseek-coder模型量化
    简介DeepSeek-Coder在多种编程语言和各种基准测试中取得了开源代码模型中最先进的性能。为尝试在开发板进行部署,首先利用llama.cpp对其进行量化。llama.cpp安装gitclone之后进入文件夹make即可,再将依赖补全pipinstall-rrequirements.txt量化可以将模型文件放到lla......
  • 多模态 + 大模型会带来哪些 “化学反应”?
    导语:没人怀疑,2024年,AI依然将是科技界的主角。上个月,OpenAI推出了可以生成60秒高清视频的视频生成模型Sora,掀起了对多模态模型的进一轮讨论。多模态大模型技术的最新进展如何?这一波新技术,对于行业和消费者的体验会带来哪些变化?面对一波波快速、热闹的突破和变化,技术人员该如......
  • WPF线程模型
    1.渲染系统概述WPF采用保留模式渲染系统(RetainedModeRenderingSystem),该系统可分为UI线程和复合线程两个主要部分,两者协作完成WPF应用程序的渲染工作。1.1立即模式GUI和保持模式GUI图形API可分为保留模式API和即时模式API。Direct2D是一种即时模式API。WPF......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的水下目标检测系统(深度学习模型+UI界面+训练数据集)
    摘要:本研究详述了一种采用深度学习技术的水下目标检测系统,该系统集成了最新的YOLOv8算法,并与YOLOv7、YOLOv6、YOLOv5等早期算法进行了性能评估对比。该系统能够在各种媒介——包括图像、视频文件、实时视频流及批量文件中——准确地识别水下目标检测。文章深入阐述了YOLOv8算法的......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的人群密度检测系统(深度学习模型+UI界面+训练数据集)
    摘要:开发人群密度检测系统对于公共安全等领域具有关键作用。本篇博客详细介绍了如何运用深度学习构建一个人群密度检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模型间的性能指标,如mAP、F1Score等。文章深入解释了YOLOv8......
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的日常场景下的人脸检测系统(深度学习模型+PySide6界
    摘要:开发用于日常环境中的人脸识别系统对增强安全监测和提供定制化服务极为关键。本篇文章详细描述了运用深度学习技术开发人脸识别系统的全过程,并附上了完整的代码。该系统搭建在强大的YOLOv8算法之上,并通过与YOLOv7、YOLOv6、YOLOv5的性能比较,展示了不同模型的关键性能指标,如mAP......