首页 > 其他分享 >Vector + ClickHouse 收集日志

Vector + ClickHouse 收集日志

时间:2024-03-15 14:56:50浏览次数:30  
标签:vector log track Vector 日志 ClickHouse

目前业界的日志生态,最常用的是 ELK,其次就是 ClickHouse,本文会演示如何使用 Vector + ClickHouse 来采集 Nginx 日志并做清洗,最终写入 ClickHouse。至于日志的可视化,后面再单独介绍,后面夜莺会把日志可视化能力下放到开源版本,之前跟映客的兄弟们交流准备一起搞,可惜迟迟没有抽出时间。别急,会有的,本文先把前半段完成,即日志的收集 + 传输 + 清洗 + 存储。存储显然是 ClickHouse,前面三个环节,使用 Vector 来完成。之前有一篇文章对 Vector 做过简单介绍,大家可以参考:《可观测性数据收集集大成者:Vector》。

配置 Nginx log

我们可以直接采集默认的 Nginx access log,不过我们可以走的更远一点,使用我们自定义的日志格式:

log_format track '$remote_addr - $time_iso8601 "$request_uri" '
                 '$status $body_bytes_sent "$http_user_agent"';
server {
  location / {
    access_log /var/log/track.log track;
    return 200 'ok';
  }
}

这个配置会把所有请求记录到 /var/log/track.log 文件中,样例如下:

127.0.0.1 - 2022-08-01T17:19:38+03:00 "/?test=1" 200 2 "curl/7.81.0"

这个日志是因为使用 curl 发起了一个如下请求:

curl "http://127.0.0.1/?test=1"

ClickHouse 表结构

下面我们创建一个 ClickHouse 表结构,用于存储 Nginx 日志,一般生产环境下,都是每个应用单独一个表,这样可以让不同的应用使用不同的日志字段,同时做了纵向切分,避免所有的日志存在一个表中导致表过大,影响查询性能。

CREATE TABLE log
(
    `ip` String,
    `time` Datetime,
    `url` String,
    `status` UInt8,
    `size` UInt32,
    `agent` String
)
ENGINE = MergeTree
ORDER BY date(time)

这个表基本够演示所用了。

安装 Vector

Vector 是一个用于构建数据传输 pipeline 的工具。它开箱即用支持 ClickHouse。使用 Vector Remap Language (VRL) 可以对日志进行清洗,把非结构化的数据清洗成结构化数据。

安装 Vector 较为简单,在 Ubuntu 上,可以使用如下命令:

curl -1sLf 'https://repositories.timber.io/public/vector/cfg/setup/bash.deb.sh' | sudo -E bash
sudo apt install vector

完事使用如下命令检查版本,如果正常输出,表示安装成功:

root@desktop:~# vector --version
vector 0.23.0 (x86_64-unknown-linux-gnu 38c2435 2022-07-11)

配置 pipeline

使用 Vector 配置日志流水线非常容易。整体上就是三步:采集 -> 处理 -> 输出,每个阶段都对应 Vector 配置中的 section,当然,采集可以有很多来源,处理也可以分多个环节,输出也可以有很多目的地。

20240307175218

配置文件:/etc/vector/vector.toml,基础步骤包括:

  • 1.[sources.***] 配置数据从哪里采集
  • 2.[transforms.***] 配置数据如何清洗处理
  • 3.[sinks.***] 配置数据输出到哪里

*** 的位置,是一个自定义的名字,可以随便取,但是要保证唯一。无论是 sources、transforms 还是 sinks,都可以有多个。

采集数据

我们故意修改了 Nginx 的日志格式,我们需要手工配置 pipeline。/var/log/track.log 日志文件内容现在是非结构化的,首先我们要用 Vector 读取它。

[sources.track]
type = "file"
include = ["/var/log/track.log"]
read_from = "end"

这里我们让 Vector 读取指定的日志文件,从文件末尾读取,只要 Nginx 有新的日志写入,Vector 就会读取到。

清洗数据

为了得到结构化的数据,我们在 VRL 中使用带有捕获组的正则表达式来处理每一行日志,这部分配置到 transforms 中。

[transforms.process]
type = "remap"
inputs = ["track"]
source = '''
. |= parse_regex!(.message, r'^(?P<ip>\d+\.\d+\.\d+\.\d+) \- (?P<date>\d+\-\d+\-\d+)T(?P<time>\d+:\d+:\d+).+?"(?P<url>.+?)" (?P<status>\d+) (?P<size>\d+) "(?P<agent>.+?)"$')
'''

Transform 部分的代码在 source 字段中,这段代码会解析日志并且把正则捕获组得到的信息放到对应的字段中。这些字段最终会被发给 ClickHouse。transform 有多种不同的类型,这里我们使用了 remap 类型,inputs 字段指定了输入源,这里是 track,即我们之前定义的源,inputs 是个数组,所以 transform 可以同时对接到多个 source 上。

存储数据

在把数据存到 ClickHouse 之前,让我们来检查一下数据是否正确。我们可以使用 console sink 来输出到控制台,这样我们可以看到 Vector 处理后的数据。

[sinks.print]
type = "console"
inputs = ["process"]
encoding.codec = "json"

这里定义了一个 sink:print,它的输入是 process,即我们之前定义的 transform。console sink 会把数据输出到控制台,encoding.codec 字段指定了输出的格式,这里是 json。如上配置都保存在 /etc/vector/vector.toml,然后使用交互模式运行 vector:

root@desktop:~# vector

使用 url 发起一个请求:127.0.0.1/?test=3,然后查看控制台输出:

root@desktop:~# vector
...
2022-08-01T14:52:54.545197Z  INFO source{component_kind="source" component_id=track component_type=file component_name=track}:file_server: vector::internal_events::file::source: Resuming to watch file. file=/var/log/track.log file_position=497
{"agent":"curl/7.81.0","date":"2022-08-01","file":"/var/log/track.log","host":"desktop","ip":"127.0.0.1","message":"127.0.0.1 - 2022-08-01T17:52:58+03:00 \"/?test=3\" 200 2 \"curl/7.81.0\"","size":"2","source_type":"file","status":"200","time":"17:52:58","timestamp":"2022-08-01T14:53:04.803689692Z","url":"/?test=3"}

我们可以看到,除了解析出的字段之外,还有一些额外的字段,比如 timestamphostmessage 等,这些字段是 Vector 自动添加的。在数据最终发给 ClickHouse 之前,我们还需要在 transform 过程做一些额外的处理:

  • 1.基于解析出的 date 和 time 字段创建一个单独的 datetime 字段
  • 2.把 status 和 size 字段转换成整型

这两个改动都可以在 transforms 部分完成。

[transforms.process]
type = "remap"
inputs = ["track"]
source = '''
. |= parse_regex!(.message, r'^(?P<ip>\d+\.\d+\.\d+\.\d+) \- (?P<date>\d+\-\d+\-\d+)T(?P<time>\d+:\d+:\d+).+?"(?P<url>.+?)" (?P<status>\d+) (?P<size>\d+) "(?P<agent>.+?)"$')
.status = to_int!(.status)
.size = to_int!(.size)
.time = .date + " " + .time
'''

. 就相当于当前这条日志记录,.status 就是当前这条日志记录的 status 字段,to_int! 就是把 status 字符串转换成整型,+ 就是字符串拼接,最终把 date 和 time 字段拼接成 datetime 字段。这样我们就完成了数据的清洗。再次发起请求,查看控制台输出:

{"agent":"curl/7.81.0","date":"2022-08-01","file":"/var/log/track.log","host":"desktop","ip":"127.0.0.1","message":"127.0.0.1 - 2022-08-01T18:05:44+03:00 \"/?test=3\" 200 2 \"curl/7.81.0\"","size":2,"source_type":"file","status":200,"time":"2022-08-01 18:05:44","timestamp":"2022-08-01T15:05:45.314800884Z","url":"/?test=3"}

一切如预想。最终,我们可以配置数据存储到 ClickHouse,增加一个 sink 配置段,之前那个输出到 console 的 sink 可以删除了。

[sinks.clickhouse]
type = "clickhouse"
inputs = ["process"]
endpoint = "http://127.0.0.1:8123"
database = "default"
table = "log"
skip_unknown_fields = true

这里我们让 Vector 读取 process 这个 transform 环节产生的数据,然后发给 ClickHouse 中的 default 数据库中的 log 表。另外,我们增加了 skip_unknown_fields 配置项来跳过未知字段,这样即使我们的日志格式发生了变化,也不会影响数据的写入。

OK,保存配置文件,重启 Vector,向 Nginx 发一些测试数据,然后,我们就可以在 ClickHouse 中看到相关日志数据了。

20240307192124

推到生产环境

vector 要在生产环境运行,就不要使用交互模式启动前台进程了,使用 systemd 或者 supervisord 之类的做进程托管。

性能考虑

我的电脑是 16C32G,可以轻松处理 2 万个请求每秒。需要几秒钟数据才能进入 ClickHouse,或许我们需要考虑使用 ClickHouse Buffer 表来优化插入性能。

小结

Vector 是一个很不错的工具,很方便的把 Nginx 日志采集、清洗、传输到 ClickHouse,Vector 提供强大的数据清洗能力,可以处理任何类型的非结构化数据。Cool。

下面是整个 vector.toml 的内容:

[sources.track]
type = "file"
include = ["/var/log/track.log"]
read_from = "end"
[transforms.process]
type = "remap"
inputs = ["track"]
source = '''
. |= parse_regex!(.message, r'^(?P<ip>\d+\.\d+\.\d+\.\d+) \- (?P<date>\d+\-\d+\-\d+)T(?P<time>\d+:\d+:\d+).+?"(?P<url>.+?)" (?P<status>\d+) (?P<size>\d+) "(?P<agent>.+?)"$')
.status = to_int!(.status)
.size = to_int!(.size)
.time = .date + " " + .time
'''
[sinks.clickhouse]
type = "clickhouse"
inputs = ["process"]
endpoint = "http://127.0.0.1:8123"
database = "default"
table = "log"
skip_unknown_fields = true

本文翻译自:https://medium.com/datadenys/using-vector-to-feed-nginx-logs-to-clickhouse-in-real-time-197745d9e88b ,感谢作者的分享。


本公众号主理人:秦晓辉,极客时间《运维监控系统实战笔记》作者,Open-Falcon、夜莺、Categraf、Cprobe 等开源项目的创始人,当前在创业,为客户提供可观测性相关的产品。如下是我们两款核心产品,欢迎访问我们的官网了解详情:

我们主要提供两款产品:

20240307192910

欢迎加我好友,交流可观测性相关话题或了解我们的商业产品,如下是我的联系方式,加好友请备注您的公司、姓名、来意

标签:vector,log,track,Vector,日志,ClickHouse
From: https://www.cnblogs.com/ulricqin/p/18075380

相关文章

  • 聊一聊 MySQL 的 InnoDB 存储引擎以及三种日志
    楔子上一篇文章我们介绍了MySQL的基本架构,这里再来回顾一下。整个架构还是很好理解的,我们说MySQL分为Server层和存储引擎层。其中Server层包含了MySQL的大多数核心服务功能,而存储引擎层则负责提供数据的存储和读取,并且是插件式的,一个Server层支持不同的存储引擎层......
  • 浮木云学习日志(11)---表格设计(一)
    ​表格作为展现数据最为清晰、高效的形式之一,同时又具有复用度高,拓展性强优势,是最常见的信息展示形式,也是对数据进行浏览和操作最便捷的设计方式,合理的表格设计能给用户带来高效的信息获取率。今天我就利用浮木云软件设计开发平台https://www.fumucloud.com/设计一款简洁美观的......
  • LoggerMessageAttribute 高性能的日志记录
    .NET6引入了LoggerMessageAttribute类型。使用时,它会以source-generators的方式生成高性能的日志记录API。source-generators可在编译代码时,可以提供其他源代码作为编译的输入。LoggerMessageAttribute依赖于ILogger接口和LoggerMessage.Define功能。在partial日......
  • 数据库不应放在容器中?- B站Kubernetes有状态服务实践(Elasticsearch/Clickhouse)
    本期作者前言云原生时代下,Kubernetes已成为容器技术的事实标准, 使得基础设施领域应用下自动化运维管理与编排成为可能。对于无状态服务而言, 业界早已落地数套成熟且较完美的解决方案。可对于有状态的服务, 方案的复杂度就以几何倍数增长, 例如分布式应用多个实例间的依......
  • Coursera自然语言处理专项课程01:Natural Language Processing with Classification an
    NaturalLanguageProcessingwithClassificationandVectorSpacesCourseCertificate本文是NaturalLanguageProcessingwithClassificationandVectorSpaces这门课的学习笔记,仅供个人学习使用,如有侵权,请联系删除。文章目录NaturalLanguageProcessingwi......
  • 14_学习日志_数据结构_冒泡排序_快速排序_插入排序
    #include<编织有意义的谎言,使我相信闭上眼再睁开眼时的世界是同一个>1.介绍    从后往前或者从前往后开始两两比较元素,使得最小数上浮或者最大数下沉为冒泡排序,快速排序利用分治思想,使得基准数左边都存放相对较小数,右边存放较大数,两边再按照同样的做法重复。插入排序......
  • journal日志管理
    目录1简介2语法3常用示例只查看内核日志查看系统启动日志查看指定时间的日志显示尾部指定行数日志实时滚动显示最新日志查看某个Unit的日志查看指定进程的日志查看某个路径的脚本的日志显示日志占据的硬盘空间指定日志文件占据的最大空间指定日志文件保存......
  • ELK日志处理部署笔记
    ELK概念简介ELK建立在三个服务上即Elasticsearch::日志检索和储存Logstash::日志收集分析处理Kibana::日志可视化Elasticsearch集群模式Elasticsearch采用了经典的raft模式,推荐将一部分专门配置为候选主节点(master-eligiblenodes),而另一部分节点则仅作为......
  • MogDB openGauss wal日志解析工具 mog_xlogdump
    MogDB/openGausswal日志解析工具mog_xlogdump本文出处:https://www.modb.pro/db/398124概述mog_xlogdump是云和恩墨独立开发的wal日志离线解析工具。熟悉PG的小伙伴应该都使用pg_xlogdump/pg_waldump查看过PG数据库的wal文件,解析的wal数据结果是没有办法直接拿......
  • 04_C++字符串_vector使用
    1.初始化vector vector<int>v1;默认初始化vector<int>v2(10);10个int类型的元素,初始化值为-1vector<string>v3{"a","bb","ccc"};列表初始化,包括三个元素2.向vector添加元素#include<iostream>#include<string>#include<vector>......