B 组都说看不懂……我也解释不清啊……只能写这么详细了
怎么才能判定一个母串是否包含几个模式串?
我们可以想到 ac 自动机,考虑对模式串建 ac 自动机,如果我们跑到了一个标记为 tail
的节点,说明我们的母串包含了这一个模式串。
所以我们设 \(f[i][s][j]\) 表示我们母串的长度为 \(i\),模式串的匹配状态为 \(s\)(状压后),当前母串跑到了 ac 自动机的节点 \(j\)。
我们枚举母串的第 \(i+1\) 个字符为 \(c\),然后在 ac 自动机上跑 \(j\) 的儿子 \(c\),再判断是否被标记为 tail
,如果是,则对模式串的匹配状态 \(s\) 进行修改。
然后记得需要跳 fail
。
这些过程和 ac 自动机的匹配过程一模一样。
我们发现跳 fail
并不是线性的,所以我们需要优化它。
因为模式串很少,我们可以把跑到一个 fail
所有的模式串的 tail
状压起来。
我们在建 fail
树时 tail[u] |= tail[fail[u]]
即可。
#include <cstdio>
#include <queue>
using namespace std;
#define N 110
#define M 32
#define K 8
#define P 1000000007
int n, m, k, cnt, ans;
char s[M];
int can[M];
int f[2][1<<K][N*M];
int nxt[N*M][26];
int tail[N*M];
int fail[N*M];
bool vis[26];
void insert(int x) {
int p = 0;
for(int i = 1; s[i] != '\0'; i++) {
if(!nxt[p][s[i]-'a']) {
nxt[p][s[i]-'a'] = ++cnt;
}
p = nxt[p][s[i]-'a'];
}
tail[p] |= (1 << x);
}
void build() {
queue<int> q;
for(int i = 1; i <= m; i++)
if(nxt[0][can[i]]) q.push(nxt[0][can[i]]);
while(!q.empty()) {
int p = q.front();
q.pop();
tail[p] |= tail[fail[p]];
for(int i = 1; i <= m; i++) {
if(nxt[p][can[i]]) {
fail[nxt[p][can[i]]] = nxt[fail[p]][can[i]];
q.push(nxt[p][can[i]]);
} else {
nxt[p][can[i]] = nxt[fail[p]][can[i]];
}
}
}
}
int main() {
scanf("%d %d", &n, &k);
for(int i = 0; i < k; i++) {
scanf("%s", s+1);
insert(i);
}
scanf("%d", &m);
m = 0;
scanf("%s", s+1);
for(int i = 1; s[i] != '\0'; i++) {
if(!vis[s[i]-'a']) {
vis[s[i]-'a'] = 1;
can[++m] = s[i]-'a';
}
}
build();
f[0][0][0] = 1;
for(int i = 0; i < n; i++) {
for(int s = 0; s < (1<<k); s++) {
for(int p = 0; p <= cnt; p++) {
f[(i+1) % 2][s][p] = 0;
}
}
for(int s = 0; s < (1<<k); s++) {
for(int p = 0; p <= cnt; p++) {
if(!f[i%2][s][p]) continue;
for(int j = 1; j <= m; j++) {
int pp = nxt[p][can[j]];
(f[(i+1) % 2][s | tail[pp]][pp] += f[i%2][s][p]) %= P;
}
}
}
}
for(int i = 0; i <= cnt; i++) {
(ans += f[n%2][(1<<k)-1][i]) %= P;
}
printf("%d", ans);
}
标签:ac,NOIP2013,int,题解,tail,母串,fail,自动机,联考
From: https://www.cnblogs.com/znpdco/p/18071684