1.系统配置
环境信息:
- 系统:CentOS Linux release 7.6.1810 (Core)
- k8s版本:1.26.0 (可自己选择)
IP | 主机名 | 规划角色 |
---|---|---|
192.168.223.123 | auto-inspaction-1 | master |
192.168.223.68 | auto-inspaction-0 | node |
192.168.223.73 | auto-inspaction-2 | node |
在各个主机上完成下面的系统配置。
如果各个主机启用了防火墙或安全组策略,需要开放Kubernetes各个组件所需要的端口,可以查看Ports and Protocols中的内容, 开放相关端口或者关闭主机的防火墙。
禁用SELINUX:
setenforce 0;sed -i 's/SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config;sed -i 's/SELINUX=permissive/SELINUX=disabled/' /etc/selinux/config
创建/etc/modules-load.d/containerd.conf配置文件:
cat << EOF > /etc/modules-load.d/containerd.conf
overlay
br_netfilter
EOF
执行以下命令使配置生效:
modprobe overlay
modprobe br_netfilter
创建/etc/sysctl.d/99-kubernetes-cri.conf配置文件:
cat << EOF > /etc/sysctl.d/99-kubernetes-cri.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
user.max_user_namespaces=28633
EOF
执行以下命令使配置生效:
sysctl -p /etc/sysctl.d/99-kubernetes-cri.conf
配置服务器支持开启ipvs的前提条件:
由于ipvs已经加入到了内核的主干,所以为kube-proxy开启ipvs的前提需要加载以下的内核模块:
ip_vs
ip_vs_rr
ip_vs_wrr
ip_vs_sh
nf_conntrack_ipv4
在各个服务器节点上执行以下脚本:
cat > /etc/sysconfig/modules/ipvs.modules <<EOF
#!/bin/bash
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack_ipv4
EOF
赋权:
chmod 755 /etc/sysconfig/modules/ipvs.modules && bash /etc/sysconfig/modules/ipvs.modules && lsmod | grep -e ip_vs -e nf_conntrack_ipv4
上面脚本创建了的/etc/sysconfig/modules/ipvs.modules文件,保证在节点重启后能自动加载所需模块。
使用lsmod | grep -e ip_vs -e nf_conntrack_ipv4命令查看是否已经正确加载所需的内核模块。
接下来还需要确保各个节点上已经安装了ipset软件包,为了便于查看ipvs的代理规则,最好安装一下管理工具ipvsadm。
yum install -y ipset ipvsadm
如果不满足以上前提条件,则即使kube-proxy的配置开启了ipvs模式,也会退回到iptables模式。
2.部署容器运行时Containerd
在各个服务器节点上安装容器运行时Containerd。
下载Containerd的二进制包,可先在网络可达的机器上下载好,再上传到服务器:
wget https://github.com/containerd/containerd/releases/download/v1.6.14/cri-containerd-cni-1.6.14-linux-amd64.tar.gz
cri-containerd-cni-1.6.14-linux-amd64.tar.gz压缩包中已经按照官方二进制部署推荐的目录结构布局好。 里面包含了systemd配置文件,containerd以及cni的部署文件。 将解压缩到系统的根目录/中:
tar -zxvf cri-containerd-cni-1.6.14-linux-amd64.tar.gz -C /
etc/
etc/cni/
etc/cni/net.d/
etc/cni/net.d/10-containerd-net.conflist
etc/systemd/
etc/systemd/system/
etc/systemd/system/containerd.service
etc/crictl.yaml
usr/
usr/local/
usr/local/sbin/
usr/local/sbin/runc
usr/local/bin/
usr/local/bin/containerd-stress
usr/local/bin/containerd-shim
usr/local/bin/containerd-shim-runc-v1
usr/local/bin/crictl
usr/local/bin/critest
usr/local/bin/containerd-shim-runc-v2
usr/local/bin/ctd-decoder
usr/local/bin/containerd
usr/local/bin/ctr
opt/
opt/cni/
opt/cni/bin/
opt/cni/bin/ptp
opt/cni/bin/bandwidth
opt/cni/bin/static
opt/cni/bin/dhcp
...
opt/containerd/
opt/containerd/cluster/
注意 经测试cri-containerd-cni-1.6.4-linux-amd64.tar.gz包中包含的runc在CentOS 7下的动态链接有问题,这里从runc的github上单独下载runc,并替换上面安装的containerd中的runc:
wget https://github.com/opencontainers/runc/releases/download/v1.1.2/runc.amd64
mv runc.amd64 runc;\cp runc /usr/local/sbin/
接下来生成containerd的配置文件:
mkdir -p /etc/containerd
containerd config default > /etc/containerd/config.toml
根据文档Container runtimes中的内容,对于使用systemd作为init system的Linux的发行版,使用systemd作为容器的cgroup driver可以确保服务器节点在资源紧张的情况更加稳定,因此这里配置各个节点上containerd的cgroup driver为systemd。
修改前面生成的配置文件/etc/containerd/config.toml:
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]
...
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
SystemdCgroup = true
再修改/etc/containerd/config.toml中的sandbox_image镜像源:
[plugins."io.containerd.grpc.v1.cri"]
...
# sandbox_image = "k8s.gcr.io/pause:3.6"
sandbox_image = "registry.aliyuncs.com/google_containers/pause:3.9"
配置containerd开机启动,并启动containerd:
systemctl enable containerd --now
使用crictl测试一下,确保可以打印出版本信息并且没有错误信息输出:
crictl version
Version: 0.1.0
RuntimeName: containerd
RuntimeVersion: v1.6.14
RuntimeApiVersion: v1
3.使用kubeadm部署Kubernetes
下面在各节点安装kubeadm和kubelet,创建yum源:
cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=http://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=0
gpgkey=http://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg
http://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF
yum makecache fast
跟根据后缀修改自己想要的版本,如kubelet-1.28.0* kubeadm-1.28.0* kubectl-1.28.0*
,不指定默认则下载的是yum源里面最新的kubelet kubeadm kubectl。
yum install -y kubelet-1.26.0* kubeadm-1.26.0* kubectl-1.26.0*
运行kubelet --help可以看到原来kubelet的绝大多数命令行flag参数都被DEPRECATED了,官方推荐我们使用--config指定配置文件,并在配置文件中指定原来这些flag所配置的内容。具体内容可以查看这里Set Kubelet parameters via a config file
最初Kubernetes这么做是为了支持动态Kubelet配置(Dynamic Kubelet Configuration),但动态Kubelet配置特性从k8s 1.22中已弃用,并在1.24中被移除。如果需要调整集群汇总所有节点kubelet的配置,还是推荐使用ansible等工具将配置分发到各个节点。
kubelet的配置文件必须是json或yaml格式,具体可查看这里
Kubernetes 1.8开始要求关闭系统的Swap,如果不关闭,默认配置下kubelet将无法启动。 关闭系统的Swap方法如下:
swapoff -a
修改/etc/fstab文件,注释掉 SWAP 的自动挂载,使用free -m确认swap已经关闭。
swappiness参数调整,修改/etc/sysctl.d/99-kubernetes-cri.conf添加下面一行,再执行sysctl -p /etc/sysctl.d/99-kubernetes-cri.conf
使修改生效。
vm.swappiness=0
4.使用kubeadm init初始化集群
在各节点开机启动kubelet服务:
systemctl enable kubelet.service
使用kubeadm config print init-defaults --component-configs KubeletConfiguration
可以打印集群初始化默认的使用的配置,这里不在贴默认配置。
从默认的配置中可以看到,可以使用imageRepository
定制在集群初始化时拉取k8s所需镜像的地址。以下配置是基于默认的配置定制出本次使用kubeadm初始化集群所需的配置文件kubeadm.yaml,特别注意修改advertiseAddress
为你的master节点主机地址。
kubernetesVersion: 1.26.0 需要与上面 yum install -y kubelet-1.26.0* kubeadm-1.26.0* kubectl-1.26.0*安装的软件包版本保持一直
cat <<EOF > kubeadm.yaml
apiVersion: kubeadm.k8s.io/v1beta3
kind: InitConfiguration
localAPIEndpoint:
advertiseAddress: 192.168.223.123
bindPort: 6443
nodeRegistration:
criSocket: unix:///run/containerd/containerd.sock
taints:
- effect: PreferNoSchedule
key: node-role.kubernetes.io/master
---
apiVersion: kubeadm.k8s.io/v1beta3
kind: ClusterConfiguration
kubernetesVersion: 1.26.0
imageRepository: registry.aliyuncs.com/google_containers
networking:
podSubnet: 10.244.0.0/16
---
apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration
cgroupDriver: systemd
failSwapOn: false
---
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: ipvs
EOF
这里定制了imageRepository为阿里云的registry,避免因gcr被墙,无法直接拉取镜像。criSocket设置了容器运行时为containerd。 同时设置kubelet的cgroupDriver为systemd,设置kube-proxy代理模式为ipvs
在开始初始化集群之前,先在各个服务器节点上拉取所k8s需要的容器镜像。
kubeadm config images pull --config kubeadm.yaml
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-apiserver:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-controller-manager:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-scheduler:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-proxy:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/pause:3.9
[config/images] Pulled registry.aliyuncs.com/google_containers/etcd:3.5.6-0
[config/images] Pulled registry.aliyuncs.com/google_containers/coredns:v1.9.3
接下来使用kubeadm初始化集群,执行下面的命令:
kubeadm config images pull --config kubeadm.yaml
[init] Using Kubernetes version: v1.26.0
[preflight] Running pre-flight checks
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [auto-inspaction-1 kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.223.123]
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/server" certificate and key
[certs] etcd/server serving cert is signed for DNS names [auto-inspaction-1 localhost] and IPs [192.168.223.123 127.0.0.1 ::1]
[certs] Generating "etcd/peer" certificate and key
[certs] etcd/peer serving cert is signed for DNS names [auto-inspaction-1 localhost] and IPs [192.168.223.123 127.0.0.1 ::1]
[certs] Generating "etcd/healthcheck-client" certificate and key
[certs] Generating "apiserver-etcd-client" certificate and key
[certs] Generating "sa" key and public key
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
[kubeconfig] Writing "kubelet.conf" kubeconfig file
[kubeconfig] Writing "controller-manager.conf" kubeconfig file
[kubeconfig] Writing "scheduler.conf" kubeconfig file
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Starting the kubelet
[control-plane] Using manifest folder "/etc/kubernetes/manifests"
[control-plane] Creating static Pod manifest for "kube-apiserver"
[control-plane] Creating static Pod manifest for "kube-controller-manager"
[control-plane] Creating static Pod manifest for "kube-scheduler"
[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"
[wait-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s
[kubelet-check] Initial timeout of 40s passed.
[apiclient] All control plane components are healthy after 105.073330 seconds
[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace
[kubelet] Creating a ConfigMap "kubelet-config" in namespace kube-system with the configuration for the kubelets in the cluster
[upload-certs] Skipping phase. Please see --upload-certs
[mark-control-plane] Marking the node auto-inspaction-1 as control-plane by adding the labels: [node-role.kubernetes.io/control-plane node.kubernetes.io/exclude-from-external-load-balancers]
[mark-control-plane] Marking the node auto-inspaction-1 as control-plane by adding the taints [node-role.kubernetes.io/master:PreferNoSchedule]
[bootstrap-token] Using token: e0q0vm.10lhzrwx4gnbcp57
[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles
[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to get nodes
[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials
[bootstrap-token] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token
[bootstrap-token] Configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace
[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key
[addons] Applied essential addon: CoreDNS
[addons] Applied essential addon: kube-proxy
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf
You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/
Then you can join any number of worker nodes by running the following on each as root:
kubeadm join 192.168.223.123:6443 --token e0q0vm.10lhzrwx4gnbcp57 \
--discovery-token-ca-cert-hash sha256:9b51a862194776913af55246e69b87431bab1b7cbf2117ec6aec9efc7b323821
上面记录了完成的初始化输出的内容,根据输出的内容基本上可以看出手动初始化安装一个Kubernetes集群所需要的关键步骤。 其中有以下关键内容:
[certs]
生成相关的各种证书[kubeconfig]
生成相关的kubeconfig文件[kubelet-start]
生成kubelet的配置文件/var/lib/kubelet/config.yaml[control-plane]
使用/etc/kubernetes/manifests目录中的yaml文件创建apiserver、controller-manager、scheduler的静态pod[bootstraptoken]
生成token记录下来,后边使用kubeadm join往集群中添加节点时会用到[addons]
安装基本插件:CoreDNS, kube-proxy
下面的命令是配置常规用户如何使用kubectl访问集群:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
最后给出了将另外其它节点加入集群的命令:
kubeadm join 192.168.223.123:6443 --token e0q0vm.10lhzrwx4gnbcp57 \
--discovery-token-ca-cert-hash sha256:9b51a862194776913af55246e69b87431bab1b7cbf2117ec6aec9efc7b323821
查看一下集群状态,确认个组件都处于healthy状态:
kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
etcd-0 Healthy {"health":"true","reason":""}
controller-manager Healthy ok
集群初始化如果遇到问题,可以使用kubeadm reset命令进行清理。
5.安装包管理器helm
Helm是Kubernetes的包管理器,后续流程也将可以使用Helm安装Kubernetes的常用组件。 这里先在master节点上安装helm。
wget https://get.helm.sh/helm-v3.10.3-linux-amd64.tar.gz
tar -zxvf helm-v3.10.3-linux-amd64.tar.gz
mv linux-amd64/helm /usr/local/bin/
执行helm list确认没有错误输出:
helm list
NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
6.在线部署flannel网络(flannel与Calico选其中一个部署)
$ kubectl apply -f https://raw.githubusercontent.com/flannel-io/flannel/master/Documentation/kube-flannel.yml
$ kubectl get pod -n kube-flannel -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
kube-flannel-ds-dl5bg 1/1 Running 0 23m 192.168.223.68 auto-inspaction-1 <none> <none>
7.部署Calico网络(flannel与Calico选其中一个部署)
选择calico作为k8s的Pod网络组件,下面使用helm在k8s集群中安装calico。
下载tigera-operator的helm chart:
wget https://github.com/projectcalico/calico/releases/download/v3.24.5/tigera-operator-v3.24.5.tgz
可以执行查看这个chart的中可定制的默认配置:helm show values tigera-operator-v3.24.5.tgz
这里不再贴默认配置
本环境定制的values.yaml如下:
# 可针对上面的配置进行定制,例如calico的镜像改成从私有库拉取。
# 这里只是个人本地环境测试k8s新版本,这里只有下面几行配置
apiServer:
enabled: false
使用helm安装calico:
helm install calico tigera-operator-v3.24.5.tgz -n kube-system --create-namespace -f values.yaml
等待并确认所有pod处于Running状态:
kubectl get pod -A |grep -E 'calico|tigera'
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-67df98bdc8-rwlq6 1/1 Running 0 22h
calico-node-5pkkn 1/1 Running 0 22h
calico-node-wtxpk 1/1 Running 0 22h
calico-node-xgj8t 1/1 Running 0 22h
calico-typha-5bf9c7b58-2w6gc 1/1 Running 0 22h
calico-typha-5bf9c7b58-jx575 1/1 Running 0 22h
tigera-operator-7795f5d79b-cflnb 1/1 Running 0 22h
查看一下calico向k8s中添加的api资源:
kubectl api-resources |grep calico
bgpconfigurations crd.projectcalico.org/v1 false BGPConfiguration
bgppeers crd.projectcalico.org/v1 false BGPPeer
blockaffinities crd.projectcalico.org/v1 false BlockAffinity
caliconodestatuses crd.projectcalico.org/v1 false CalicoNodeStatus
clusterinformations crd.projectcalico.org/v1 false ClusterInformation
felixconfigurations crd.projectcalico.org/v1 false
..........................
这些api资源是属于calico的,因此不建议使用kubectl来管理,推荐按照calicoctl来管理这些api资源。 将calicoctl安装为kubectl的插件:
cd /usr/local/bin
curl -o kubectl-calico -O -L "https://github.com/projectcalico/calicoctl/releases/download/v3.21.5/calicoctl-linux-amd64"
chmod +x kubectl-calico
验证插件正常工作:
kubectl calico -h
8.验证k8s DNS是否可用
首次验证:
kubectl run curl --image=radial/busyboxplus:curl -it
If you don't see a command prompt, try pressing enter.
[ root@curl:/ ]$ nslookup kubernetes.default
Server: 10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local
Name: kubernetes.default
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local
后续进入相同的容器可继续执行命令:
kubectl exec -it curl -- /bin/sh
9.使用Helm部署ingress-nginx
了便于将集群中的服务暴露到集群外部,需要使用Ingress。接下来使用Helm将ingress-nginx部署到Kubernetes上。 Nginx Ingress Controller被部署在Kubernetes的边缘节点上。
这里将主机 auto-inspaction-0 作为边缘节点,打上Label:
kubectl label node auto-inspaction-0 node-role.kubernetes.io/edge=
下载ingress-nginx的helm chart:
wget https://github.com/kubernetes/ingress-nginx/releases/download/helm-chart-4.4.2/ingress-nginx-4.4.2.tgz
执行helm show values ingress-nginx-4.4.2.tgz
查看ingress-nginx-4.4.2.tgz这个chart的m默认配置,这里不再贴出默认配置。
对ingress-values.yaml配置定制如下,可以直接用:
cat <<EOF > ingress-values.yaml
controller:
ingressClassResource:
name: nginx
enabled: true
default: true
controllerValue: "k8s.io/ingress-nginx"
admissionWebhooks:
enabled: false
replicaCount: 1
image:
# registry: registry.k8s.io
# image: ingress-nginx/controller
# tag: "v1.5.1"
registry: docker.io
image: unreachableg/registry.k8s.io_ingress-nginx_controller
tag: "v1.5.1"
digest: sha256:97fa1ff828554ff4ee1b0416e54ae2238b27d1faa6d314d5a94a92f1f99cf767
hostNetwork: true
nodeSelector:
node-role.kubernetes.io/edge: ''
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- nginx-ingress
- key: component
operator: In
values:
- controller
topologyKey: kubernetes.io/hostname
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
- key: node-role.kubernetes.io/master
operator: Exists
effect: PreferNoSchedule
EOF
nginx ingress controller的副本数replicaCount为1,将被调度到node1这个边缘节点上。这里并没有指定nginx ingress controller service的externalIPs,而是通过hostNetwork: true设置nginx ingress controller使用宿主机网络。 因为k8s.gcr.io被墙,这里替换成unreachableg/registry.k8s.io_ingress-nginx_controller提前拉取一下镜像:
crictl pull unreachableg/registry.k8s.io_ingress-nginx_controller:v1.5.1
部署:
helm install ingress-nginx ingress-nginx-4.4.2.tgz --create-namespace -n ingress-nginx -f ingress-values.yaml
查看部署结果
kubectl get pods -n ingress-nginx
NAME READY STATUS RESTARTS AGE
ingress-nginx-controller-7c96f857f-szcct 1/1 Running 0 22h
创建deployment service ingress测试:
cat <<EOF > nginx.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.13.12
ports:
- containerPort: 80
---
apiVersion: v1
kind: Service
metadata:
name: nginx-service
labels:
app: nginx
spec:
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80
type: NodePort
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: nginx-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: "k8s.example.com"
http:
paths:
- pathType: Prefix
path: "/app"
backend:
service:
name: nginx-service
port:
number: 80
EOF
执行创建测试资源,并检查相应资源状态。
kubectl create -f nginx.yaml
kubectl get pod
NAME READY STATUS RESTARTS AGE
curl 1/1 Running 2 (25m ago) 46h
nginx-deployment-65fd9f9d8b-w7r7g 1/1 Running 1 (25m ago) 36m
[root@auto-inspaction-0 k8s-1.26]# kubectl get pod,svc,ingress
NAME READY STATUS RESTARTS AGE
pod/curl 1/1 Running 2 (25m ago) 46h
pod/nginx-deployment-65fd9f9d8b-w7r7g 1/1 Running 1 (25m ago) 36m
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 47h
service/nginx-service NodePort 10.110.125.169 <none> 80:30403/TCP 23m
NAME CLASS HOSTS ADDRESS PORTS AGE
ingress.networking.k8s.io/nginx-ingress nginx k8s.example.com 80 15m
浏览器测试访问nginx,出现Welcome to nginx!则成功,访问前提电脑要配置域名地址解析。
https://k8s.example.com/app
10.在线部署kubernetes dashbord
# 部署kubernetes dashborad
$ kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml
# 测试dashborad, 返回:HTTP/1.1 200 OK则正常。
$ curl -ki https://$(kubectl get svc -n kubernetes-dashboard kubernetes-dashboard | grep -Eo '([0-9]{1,3}\.){3}.[0-9]{1,3}')
# 访问dashborad,可以先把dashborad service里面的 type: ClusterIP 改为type: NodePort
# kubectl edit svc -n kubernetes-dashboard kubernetes-dashboard
# 找到NodePort端口
$ kubectl get svc -n kubernetes-dashboard kubernetes-dashboard -o yaml| grep nodePort
$ - nodePort: 32696
# 宿主机的IP访问dashborad
$ https://192.168.3.226:32696
# 使用 Kubernetes 的服务帐户机制创建新用户,授予该用户管理员权限并使用与该用户绑定的令牌登录仪表板。
$ cat << EOF > /root/admin-token.yaml
## Creating a Service Account
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: admin-user
namespace: kubernetes-dashboard
## Creating a ClusterRoleBinding
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: admin-user
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: admin-user
namespace: kubernetes-dashboard
## Getting a Bearer Token for ServiceAccount
# kubectl -n kubernetes-dashboard create token admin-user --duration=8760h
## Getting a long-lived Bearer Token for ServiceAccount
---
apiVersion: v1
kind: Secret
metadata:
name: admin-user
namespace: kubernetes-dashboard
annotations:
kubernetes.io/service-account.name: "admin-user"
type: kubernetes.io/service-account-token
EOF
# 获取token登录仪表板
kubectl get secret admin-user -n kubernetes-dashboard -o jsonpath={".data.token"} | base64 -d
eyJhbGciOiJSUzI1NiIsImtpZCI6Ijc0SWU1S2cxUzVoSll5S3pZQmh1b1pFMjR4ZlpDSDlUS1NwRW9JRFhfVW8ifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi11c2VyIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluLXVzZXIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiIzOGM0N2RmZC0wNjk0LTQ4MGEtOTYzNy1kNmQ3MzE2ODU3MTMiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6a3ViZXJuZXRlcy1kYXNoYm9hcmQ6YWRtaW4tdXNlciJ9.3Mf3IlS0hRnt3FlVAbY1Z7omWZ4MAfV7ILXLM6zzGnkHpEtMwx1QC5fwCeyMLarfo3eEzS-BkbkCgi8QZ0btdnUDC_7y1j4XckblazcXVI98Jff0UOu58KXy5KJzsRVTT25GKvPHsE8sJUOkx7SUaoLN-XtwRqF8wfUADgNQAHAEUtuhpxk1KxHaxUmffgHsa3VhMVAJxy4G80ZhFwAu9_HabFXzmq8NAxQm0I6W3UBLk0JyLAu5QOz2j68AW9iPFDx0pYyucO7IiwA1jOwwgYjXY7xSamxJK-xWDrTP-LqLN03Lw90IZKDzWmb-SDZp41BWC9ppF7LKAFgNsU8QXQ
参考文献:kubeadm-install-kubernetes-1.26
标签:Kubernetes,kubernetes,etc,containerd,kubelet,nginx,io,kubeadm,1.26 From: https://www.cnblogs.com/acommoners/p/18067794