首页 > 其他分享 >分布式锁实现方案

分布式锁实现方案

时间:2024-03-07 11:55:55浏览次数:34  
标签:方案 实现 ZooKeeper Redis 获取 分布式 节点 客户端

一 基于 Redis 实现分布式锁

如何基于 Redis 实现一个最简易的分布式锁?

不论是本地锁还是分布式锁,核心都在于“互斥”。

在 Redis 中, SETNX 命令是可以帮助我们实现互斥。SETNXSET if Not eXists (对应 Java 中的 setIfAbsent 方法),如果 key 不存在的话,才会设置 key 的值。如果 key 已经存在, SETNX 啥也不做。

SETNX lockKey uniqueValue
(integer) 1
SETNX lockKey uniqueValue
(integer) 0

释放锁的话,直接通过 DEL 命令删除对应的 key 即可。

DEL lockKey
(integer) 1

为了防止误删到其他的锁,这里我们建议使用 Lua 脚本通过 key 对应的 value(唯一值)来判断。

选用 Lua 脚本是为了保证解锁操作的原子性。因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,从而保证了锁释放操作的原子性。

// 释放锁时,先比较锁对应的 value 值是否相等,避免锁的误释放
if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

这是一种最简易的 Redis 分布式锁实现,实现方式比较简单,性能也很高效。不过,这种方式实现分布式锁存在一些问题。就比如应用程序遇到一些问题比如释放锁的逻辑突然挂掉,可能会导致锁无法被释放,进而造成共享资源无法再被其他线程/进程访问。

 

为什么要给锁设置一个过期时间?

为了避免锁无法被释放,我们可以想到的一个解决办法就是:给这个 key(也就是锁) 设置一个过期时间 。

127.0.0.1:6379> SET lockKey uniqueValue EX 3 NX
OK
  • lockKey:加锁的锁名;
  • uniqueValue:能够唯一标示锁的随机字符串;
  • NX:只有当 lockKey 对应的 key 值不存在的时候才能 SET 成功;
  • EX:过期时间设置(秒为单位)EX 3 标示这个锁有一个 3 秒的自动过期时间。与 EX 对应的是 PX(毫秒为单位),这两个都是过期时间设置。

一定要保证设置指定 key 的值和过期时间是一个原子操作!!! 不然的话,依然可能会出现锁无法被释放的问题。

这样确实可以解决问题,不过,这种解决办法同样存在漏洞:如果操作共享资源的时间大于过期时间,就会出现锁提前过期的问题,进而导致分布式锁直接失效。如果锁的超时时间设置过长,又会影响到性能。

你或许在想:如果操作共享资源的操作还未完成,锁过期时间能够自己续期就好了!

 

 

如何实现锁的优雅续期?

对于 Java 开发的小伙伴来说,已经有了现成的解决方案:Redisson

Redisson 是一个开源的 Java 语言 Redis 客户端,提供了很多开箱即用的功能,不仅仅包括多种分布式锁的实现。并且,Redisson 还支持 Redis 单机、Redis Sentinel、Redis Cluster 等多种部署架构。

Redisson 中的分布式锁自带自动续期机制,使用起来非常简单,原理也比较简单,其提供了一个专门用来监控和续期锁的 Watch Dog( 看门狗),如果操作共享资源的线程还未执行完成的话,Watch Dog 会不断地延长锁的过期时间,进而保证锁不会因为超时而被释放。

默认情况下,每过 10 秒,看门狗就会执行续期操作,将锁的超时时间设置为 30 秒。看门狗续期前也会先判断是否需要执行续期操作,需要才会执行续期,否则取消续期操作。

 


 

如何实现可重入锁?

所谓可重入锁指的是在一个线程中可以多次获取同一把锁,比如一个线程在执行一个带锁的方法,该方法中又调用了另一个需要相同锁的方法,则该线程可以直接执行调用的方法即可重入 ,而无需重新获得锁。像 Java 中的 synchronizedReentrantLock 都属于可重入锁。

不可重入的分布式锁基本可以满足绝大部分业务场景了,一些特殊的场景可能会需要使用可重入的分布式锁。

可重入分布式锁的实现核心思路是线程在获取锁的时候判断是否为自己的锁,如果是的话,就不用再重新获取了。为此,我们可以为每个锁关联一个可重入计数器和一个占有它的线程。当可重入计数器大于 0 时,则锁被占有,需要判断占有该锁的线程和请求获取锁的线程是否为同一个。

实际项目中,我们不需要自己手动实现,推荐使用我们上面提到的 Redisson ,其内置了多种类型的锁比如可重入锁(Reentrant Lock)、自旋锁(Spin Lock)、公平锁(Fair Lock)、多重锁(MultiLock)、 红锁(RedLock)、 读写锁(ReadWriteLock)。

 

 

Redis 如何解决集群情况下分布式锁的可靠性?

为了避免单点故障,生产环境下的 Redis 服务通常是集群化部署的。

Redis 集群下,上面介绍到的分布式锁的实现会存在一些问题。由于 Redis 集群数据同步到各个节点时是异步的,如果在 Redis 主节点获取到锁后,在没有同步到其他节点时,Redis 主节点宕机了,此时新的 Redis 主节点依然可以获取锁,所以多个应用服务就可以同时获取到锁。

针对这个问题,Redis 之父 antirez 设计了 Redlock 算法 来解决。

Redlock 算法的思想是让客户端向 Redis 集群中的多个独立的 Redis 实例依次请求申请加锁,如果客户端能够和半数以上的实例成功地完成加锁操作,那么我们就认为,客户端成功地获得分布式锁,否则加锁失败。

即使部分 Redis 节点出现问题,只要保证 Redis 集群中有半数以上的 Redis 节点可用,分布式锁服务就是正常的。

Redlock 是直接操作 Redis 节点的,并不是通过 Redis 集群操作的,这样才可以避免 Redis 集群主从切换导致的锁丢失问题。

如果不是非要实现绝对可靠的分布式锁的话,其实单机版 Redis 就完全够了,实现简单,性能也非常高。如果你必须要实现一个绝对可靠的分布式锁的话,可以基于 ZooKeeper 来做,只是性能会差一些。

   

二 基于 zookeeper 实现分布式锁

ZooKeeper 分布式锁是基于 临时顺序节点Watcher(事件监听器) 实现的。

获取锁:

  1. 首先我们要有一个持久节点/locks,客户端获取锁就是在locks下创建临时顺序节点。
  2. 假设客户端 1 创建了/locks/lock1节点,创建成功之后,会判断 lock1是否是 /locks 下最小的子节点。
  3. 如果 lock1是最小的子节点,则获取锁成功。否则,获取锁失败。
  4. 如果获取锁失败,则说明有其他的客户端已经成功获取锁。客户端 1 并不会不停地循环去尝试加锁,而是在前一个节点比如/locks/lock0上注册一个事件监听器。这个监听器的作用是当前一个节点释放锁之后通知客户端 1(避免无效自旋),这样客户端 1 就加锁成功了。

释放锁:

  1. 成功获取锁的客户端在执行完业务流程之后,会将对应的子节点删除。
  2. 成功获取锁的客户端在出现故障之后,对应的子节点由于是临时顺序节点,也会被自动删除,避免了锁无法被释放。
  3. 我们前面说的事件监听器其实监听的就是这个子节点删除事件,子节点删除就意味着锁被释放。

 

为什么要用临时顺序节点?

每个数据节点在 ZooKeeper 中被称为 znode,它是 ZooKeeper 中数据的最小单元。

我们通常是将 znode 分为 4 大类:

  • 持久(PERSISTENT)节点:一旦创建就一直存在即使 ZooKeeper 集群宕机,直到将其删除。
  • 临时(EPHEMERAL)节点:临时节点的生命周期是与 客户端会话(session) 绑定的,会话消失则节点消失 。并且,临时节点只能做叶子节点 ,不能创建子节点。
  • 持久顺序(PERSISTENT_SEQUENTIAL)节点:除了具有持久(PERSISTENT)节点的特性之外, 子节点的名称还具有顺序性。比如 /node1/app0000000001/node1/app0000000002
  • 临时顺序(EPHEMERAL_SEQUENTIAL)节点:除了具备临时(EPHEMERAL)节点的特性之外,子节点的名称还具有顺序性。

可以看出,临时节点相比持久节点,最主要的是对会话失效的情况处理不一样,临时节点会话消失则对应的节点消失。这样的话,如果客户端发生异常导致没来得及释放锁也没关系,会话失效节点自动被删除,不会发生死锁的问题。

使用 Redis 实现分布式锁的时候,我们是通过过期时间来避免锁无法被释放导致死锁问题的,而 ZooKeeper 直接利用临时节点的特性即可。

假设不使用顺序节点的话,所有尝试获取锁的客户端都会对持有锁的子节点加监听器。当该锁被释放之后,势必会造成所有尝试获取锁的客户端来争夺锁,这样对性能不友好。使用顺序节点之后,只需要监听前一个节点就好了,对性能更友好。

 

为什么要设置对前一个节点的监听?

Watcher(事件监听器),是 ZooKeeper 中的一个很重要的特性。ZooKeeper 允许用户在指定节点上注册一些 Watcher,并且在一些特定事件触发的时候,ZooKeeper 服务端会将事件通知到感兴趣的客户端上去,该机制是 ZooKeeper 实现分布式协调服务的重要特性。

同一时间段内,可能会有很多客户端同时获取锁,但只有一个可以获取成功。如果获取锁失败,则说明有其他的客户端已经成功获取锁。获取锁失败的客户端并不会不停地循环去尝试加锁,而是在前一个节点注册一个事件监听器。

这个事件监听器的作用是:当前一个节点对应的客户端释放锁之后(也就是前一个节点被删除之后,监听的是删除事件),通知获取锁失败的客户端(唤醒等待的线程,Java 中的 wait/notifyAll ),让它尝试去获取锁,然后就成功获取锁了。

 

总结

在这篇文章中,我介绍了实现分布式锁的两种常见方式: Redis 和 ZooKeeper。至于具体选择 Redis 还是 ZooKeeper 来实现分布式锁,还是要看业务的具体需求。

  • 如果对性能要求比较高的话,建议使用 Redis 实现分布式锁(优先选择 Redisson 提供的现成的分布式锁,而不是自己实现)。
  • 如果对可靠性要求比较高的话,建议使用 ZooKeeper 实现分布式锁(推荐基于 Curator 框架实现)。不过,现在很多项目都不会用到 ZooKeeper,如果单纯是因为分布式锁而引入 ZooKeeper 的话,那是不太可取的,不建议这样做,为了一个小小的功能增加了系统的复杂度。

标签:方案,实现,ZooKeeper,Redis,获取,分布式,节点,客户端
From: https://www.cnblogs.com/balfish/p/18058562

相关文章

  • 使用 SPL 高效实现 Flink SLS Connector 下推
    作者:潘伟龙(豁朗)背景日志服务SLS是云原生观测与分析平台,为Log、Metric、Trace等数据提供大规模、低成本、实时的平台化服务,基于日志服务的便捷的数据接入能力,可以将系统日志、业务日志等接入SLS进行存储、分析;阿里云Flink是阿里云基于ApacheFlink构建的大数据分析平台......
  • SpringBoot使用外部Web容器的解决方案
    SpringBoot默认内嵌了Web容器(如Tomcat、Jetty或Undertow),这使得应用可以作为独立的可执行JAR或WAR文件运行,无需外部Web容器。然而,在某些情况下,你可能想要将SpringBoot应用部署到外部的Web容器中,比如ApacheTomcat或Jetty。嵌入式的Web容器:应用可以打包成可执行的Jar。优点:简单......
  • .NET集成DeveloperSharp实现数据分页
    数据分页,几乎是任何应用系统的必备功能。但当数据量较大时,分页操作的效率就会变得很低。大数据量分页时,一个操作耗时5秒、10秒、甚至更长时间都是有可能的,但这在用户使用的角度是不可接受的…… 数据分页往往有三种常用方案。第一种,把数据库中存放的相关数据,全部读入代码/内存......
  • vue使用超图openlayers调用mapv实现蜂窝图
    在用超图openlayer开发的时候遇到问题,在此作为记录。文字描述不对的地方请多担待, 下载依赖,npmimapv 按需引入,因为官网例子是普通的html引入,{mapv}引入方式调用的是超图@supermap中的方法。DataSet是mapv的方法 import{Mapv} from'@supermap/iclient-ol/overla......
  • 大厂的视频推荐索引构建解决方案
    关注我,紧跟本系列专栏文章,咱们下篇再续!作者简介:魔都技术专家兼架构,多家大厂后端一线研发经验,各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。负责:中央/分销预订系统性能优化活动&优惠券等营销中台建设交易平台及数据中台等架构和开发设计......
  • WebApi后端实现大文件分片上传
    放开上传大小限制放开代码|框架层限制在Program.cs文件中添加如下代码不然会出现下面的限制错误builder.Services.Configure(x=>{x.AllowSynchronousIO=true;//配置可以同步请求读取流数据x.Limits.MaxRequestBodySize=int.MaxValue;}).Configure(x=>{x.A......
  • Avalonia/Wpf 实现文字跑马灯效果
    WPF:<BorderWidth="100"Height="30"BorderBrush="Black"BorderThickness="1"><CanvasClipToBounds="True"><TextBlockText="HelloWorld"......
  • 【实战技能】简单易实现的SWD接口烧录目标板挂载的EEPROM,支持AT24C02/04/08/16/32/64/
    之前针对外部SPIFlash的SWD接口烧写,制作过一期专题视频教程。产品生产时,不仅SPIFlash,有时候希望烧录目标板程序后,将EERPOM里面的参数也通过SWD接口存储进去,这样就不再需要大家单独再接上EEPROM的I2C接口烧录了,产品生产比较省事。针对这个问题就花了些时间,制作了下EEPROM的烧写......
  • NetCore Rtsp视频流转Websocket实现Web实时查看摄像头
    .NetCoreRtsp视频流转Websocket实现Web实时查看摄像头最近工作中遇到需求需要实现这个功能,网上找了很多方案,大都是转为视频文件保存,实时查看的方案倒比较少,最终自己慢慢琢磨了很久在windows系统下实现了,里面的核心思路是:由FFmpeg.AutoGen捕捉Rtsp流视频帧,转为Bitmap,借由Websocke......
  • 聊聊懒加载以及优化方案
    我们是袋鼠云数栈UED团队,致力于打造优秀的一站式数据中台产品。我们始终保持工匠精神,探索前端道路,为社区积累并传播经验价值。本文作者:霁明什么是懒加载(lazyloading)懒加载是一种将资源标识为非阻塞(非关键)资源并仅在需要时加载它们的策略。这是一种缩短关键渲染路径长度......