首页 > 其他分享 >[数据结构] 树、森林及二叉树的应用

[数据结构] 树、森林及二叉树的应用

时间:2024-03-05 09:12:26浏览次数:28  
标签:遍历 int BinaryTree 二叉树 数据结构 节点 森林

树、森林

树的存储结构

双亲表示法

image

双亲表示法的存储结构

#define MAX_TREE_SIZE 100
typedef struct {
    int data;
    int parent;
}PTNode;
typedef struct {
    PTNode nodes[MAX_TREE_SIZE];
    int n;
}PTree;

【注】 区别树的顺序存储结构与二叉树的顺序存储结构。在树的顺序存储结构中,数组下标代表节点的编号,下标中所存的内容指示了节点之间的关系。而在二叉树的顺序存储结构中, 数组下标既表达了节点的编号,又指示了二叉树中节点之间的关系。当然,二叉树属于树,因此二叉树也可以用树的存储结构来存储,但树却不能都用都用二叉树的存储结构来存储。

孩子表示法

孩子表示法是将每个节点的孩子节点视为一个线性表,且以单链表作为存储结构,则\(n\)个节点就有\(n\)个孩子链表(叶节点的孩子链表为空表)。而\(n\)个头指针又组成一个线性表。

与双亲表示法相反,孩子表示法寻找孩子的操作非常方便,而寻找双亲的操作则需要遍历\(n\)个节点中孩子链表指针域所指向的\(n\)个孩子链表。

孩子兄弟表示法

又称二叉树表示法,即以二叉链表作为树的存储结构。孩子兄弟表示法使每个节点包括三个部分的内容:节点值、指向节点第一个孩子节点的指针、指向节点下一个兄弟节点的指针

结构体如下:

typedef struct CSNode {
    inr data;
    struct CSNode *firstchild, *nextsibling;
}CSNode, *CSTree;

树、森林、二叉树的转换

树转换为二叉树

(1)在兄弟节点之间画一条线;

(2)对每个节点,只保留它与第一个孩子的连线,而与其他孩子的连线全部删除;

(3)以树根为轴心,顺时针旋转45°。

image
image

以下代码引用我大佬同学:作者:Amαdeus,出处:https://www.cnblogs.com/MAKISE004/p/17089756.html

//树 转化为 二叉树
BinaryTree CSTree_Transform_to_BinaryTree(CSTree ct){
 if(!ct) return NULL;

 BinaryTree T = (BinaryTree)malloc(sizeof(BiNode));
 T->data = ct->data;
 //相当于将left变为firstchild, 将right变为nextsibling 本质的形态没有改变
 T->leftchild = CSTree_Transform_to_BinaryTree(ct->firstchild);
 T->rightchild = CSTree_Transform_to_BinaryTree(ct->nextsibling);

 return T;
}

森林转换为二叉树

(1)将森林中的每棵树转换成相应的二叉树;

(2)每棵树的根视为兄弟关系,加上连线;

(3)以第一棵树的根为轴心顺时针旋转45°。

以下代码引用我大佬同学:作者:Amαdeus,出处:https://www.cnblogs.com/MAKISE004/p/17089756.html

//森林 转化为 二叉树
BinaryTree Forest_Transform_to_BinaryTree(CSTree ct[], int low, int high){
 if(low > high)  return NULL;

 //每个树变成二叉树
 BinaryTree T = CSTree_Transform_to_BinaryTree(ct[low]);  
 //通过rightchild连接每一个二叉树的根节点
 T->rightchild = Forest_Transform_to_BinaryTree(ct, low + 1, high);

 return T;
}

树、森林的遍历

树的遍历

  • 先根遍历。若树非空,则按如下规则遍历:

    • 先访问根节点
    • 再依次遍历根节点的每棵子树,遍历子树时仍遵循先根后子树的规则
  • 后根遍历。若树非空,则按如下规则遍历:

    • 先依次遍历根节点的每棵子树,遍历子树时仍遵循先子树后根的规则
    • 再访问根节点

树的先根遍历与对应二叉树的先序序列相同,树的后根遍历与对应二叉树的中序序列相同。

森林的遍历

  • 先序遍历森林。若森林非空,则按如下规则遍历:

    • 访问森林中第一棵树的根节点
    • 先序遍历第一棵树中根节点的子树森林
    • 先序遍历除去第一棵树之后剩余的树构成的森林
  • 中序遍历森林。若森林非空,则按如下规则遍历:

    • 中序遍历森林中第一棵树的根节点的子树森林
    • 访问第一棵树的根节点
    • 中序遍历粗去第一棵树之后剩余的树构成的森林

树与二叉树的应用

哈夫曼树和哈夫曼编码

几个概念

  • 路径:树中一个节点到另一个节点之间的分支构成

  • 路径长度:路径上的分支数目

  • 权:树中节点被赋予的一个表示某种意义的数值

  • 带权路径长度:从树的根到一个节点的路径长度与该节点上权值的乘积

    \[WPL = \sum_{i=1}^{n}w_il_i \]

    其中,\(w_i\)是第\(i\)个叶节点所带的权值,\(l_i\)是该叶节点到根节点的路径长度

在含有\(n\)个带权叶节的二叉树中,其中带权路径长度最小的二叉树称为哈夫曼树

下面看个算法:递归求WPL

int getWPL(struct TreeNode *root, int depth) {
    if (root == NULL) { // 如果节点为空,返回0
        return 0;
    }
    if (root->left == NULL && root->right == NULL) { // 如果节点是叶子节点,返回带权路径长度
        return depth * root->val;
    }
    // 如果节点不是叶子节点,递归计算左子树和右子树的WPL,并相加返回
    return getWPL(root->left, depth + 1) + getWPL(root->right, depth + 1);
}

接下来咱们举个栗子,来看一下哈夫曼编码

image

看题:来自北邮考研机试

3531. 哈夫曼树 - AcWing题库

题解:

// 优先队列求哈夫曼树最短带权路径长度
#include<bits/stdc++.h>
using namespace std;

int main() {
    int n;
    cin >> n;
    priority_queue<int, vector<int>, greater<int> > q;
    for(int i = 0; i < n; i ++) {
        int x;
        cin >> x;
        q.push(x);
    }
    int ans = 0;
    while(q.size() > 1) {
        int t1 = q.top();
        q.pop();
        int t2 = q.top();
        q.pop();
        q.push(t1 + t2);
        ans += t1 + t2;
    }
    cout << ans << endl;
    return 0;
}

并查集

这里不想做太多解释,我们看一下y总的模版(写的时候已经快要零点了,第二天还要早起)(PS:第二天果然多睡了半个小时)

(1)朴素并查集:

    int p[N]; //存储每个点的祖宗节点

    // 返回x的祖宗节点
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ ) p[i] = i;

    // 合并a和b所在的两个集合:
    p[find(a)] = find(b);


(2)维护size的并查集:

    int p[N], size[N];
    //p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量

    // 返回x的祖宗节点
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ ) {
        p[i] = i;
        size[i] = 1;
    }

    // 合并a和b所在的两个集合:
    size[find(b)] += size[find(a)];
    p[find(a)] = find(b);


(3)维护到祖宗节点距离的并查集:

    int p[N], d[N];
    //p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

    // 返回x的祖宗节点
    int find(int x) {
        if (p[x] != x) {
            int u = find(p[x]);
            d[x] += d[p[x]];
            p[x] = u;
        }
        return p[x];
    }

    // 初始化,假定节点编号是1~n
    for (int i = 1; i <= n; i ++ ) {
        p[i] = i;
        d[i] = 0;
    }

    // 合并a和b所在的两个集合:
    p[find(a)] = find(b);
    d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

作者:yxc
链接:https://www.acwing.com/blog/content/404/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

836. 合并集合 - AcWing题库

#include<bits/stdc++.h>
using namespace std;

const int N = 100010;
int p[N];//定义多个集合

int find(int x) {
    if(p[x] != x) p[x] = find(p[x]);
    /*
    经上述可以发现,每个集合中只有祖宗节点的p[x]值等于他自己,即:
    p[x]=x;
    */
    return p[x];
    //找到了便返回祖宗节点的值
}C

int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++) p[i]=i;
    while(m --) {
        char op[2];
        int a, b;
        scanf("%s%d%d", op, &a, &b);
        if(*op == 'M') p[find(a)] = find(b);//集合合并操作
        else
        	if(find(a)==find(b))
        	//如果祖宗节点一样,就输出yes
        		printf("Yes\n");
       	 	else
        		printf("No\n");
    }
    return 0;
}

标签:遍历,int,BinaryTree,二叉树,数据结构,节点,森林
From: https://www.cnblogs.com/wanyy-home/p/18053227

相关文章

  • [数据结构] 树与二叉树
    树的基本概念树的定义树是由\(n(n\geq0)\)个节点组成的有限集。当\(n=0\)时,称为空树。任意一棵非空树应满足以下两点:(1)有且仅有一个特定的称为根的节点;(2)当\(n>1\)时,其余节点可分为\(m(m>0)\)个互不相交的有限集\(T_1,T_2,\dots,T_m\),其中每个集合本身又是一棵树,称为......
  • P8681 [蓝桥杯 2019 省 AB] 完全二叉树的权值
    做这道题的时候混淆了满二叉树和完全二叉树的概念:满二叉树:顾名思义,就是塞满了完全二叉树:除了最后一层之外,每一层都必须是满的,且最后一层如果不满,则所有节点都尽可能靠左。#include<iostream>#include<stdio.h>#include<algorithm>#include<string>#defineFor(i,j,n......
  • 现有Sketch数据结构|持续更新|菜鸟学习
    写在前面比较简略,偏差之类的理论推导建议去读论文,如果有误麻烦指出套话Sketch的基础是概要数据结构(SummaryDataStructure),它是一种可以以较小的内存消耗来表示和估计大规模数据集的某些属性的数据结构。概要数据结构通过对原始数据进行压缩、聚合或采样,以及使用一些统计方法......
  • 现有Sketch数据结构|持续更新|菜鸟学习
    写在前面比较简略,偏差之类的理论推导建议去读论文,如果有误麻烦指出套话Sketch的基础是概要数据结构(SummaryDataStructure),它是一种可以以较小的内存消耗来表示和估计大规模数据集的某些属性的数据结构。概要数据结构通过对原始数据进行压缩、聚合或采样,以及使用一些统计方法......
  • 现有Sketch数据结构|持续更新|菜鸟学习
    现有Sketch数据结构基本原理写在前面比较简略,偏差之类的理论推导建议去读论文,如果有误麻烦指出套话由GPT生成Sketch的基础是概要数据结构(SummaryDataStructure),它是一种可以以较小的内存消耗来表示和估计大规模数据集的某些属性的数据结构。概要数据结构通过对原始数据进行......
  • 第二节:栈相关(二叉树展开为链表、逆波兰表达式、两栈实现队列结构)
    一.        二.        三.         !作       者:Yaopengfei(姚鹏飞)博客地址:http://www.cnblogs.com/yaopengfei/声     明1:如有错误,欢迎讨论,请勿谩骂^_^。声     明2:原创博客请在转载......
  • 二叉树
    记录21:162024-3-31.二叉树1.二叉查找树(BST)2.Treap3.平衡二叉树(AVL)先把自己当时学的时候写的放上来reference:《数据结构与算法分析》嘛,现在只能记得左旋右旋了(喝左旋哈哈哈)点击查看代码#define_CRT_SECURE_NO_WARNINGS//vs中scanf为不安全的函数要使用......
  • P1040 [NOIP2003 提高组] 加分二叉树
    原题链接题解计算分数是搜索存储前缀注意细节code#include<bits/stdc++.h>usingnamespacestd;#definelllonglongllsco[35][35]={0};stringpre[35][35];lla[35]={0};queue<ll>q;inlinevoidread(ll&x){x=0;llflag=1;charc=getch......
  • 力扣781.森林中的兔子
    题目:森林中有未知数量的兔子。提问其中若干只兔子"还有多少只兔子与你(指被提问的兔子)颜色相同?",将答案收集到一个整数数组answers中,其中answers[i]是第i只兔子的回答。给你数组answers,返回森林中兔子的最少数量。实现方法:由于要求兔子最少数量,可以假定答案相同的......
  • 数据结构总纲
    一概述Java集合,也叫作容器,主要是由两大接口派生而来:一个是Collection接口,主要用于存放单一元素;另一个是Map接口,主要用于存放键值对。对于Collection接口,下面又有三个主要的子接口:List、Set和QueueJava集合框架如下图所示: ListArrayList:Object[]数组。Vector:O......