首先环是不用管的,只用判环长是否为 \(3\) 的倍数即可。
考虑设 \(f(x, y, z)\) 表示 \(x\) 个 \(1\) 链,\(y\) 个 \(2\) 链,\(z\) 个 \(0\) 链,组成所有环长都为 \(3\) 的倍数的方案数。
注意到 \(f(x, y, z) = (x + y + z) f(x, y, z - 1)\)(可以接到剩下的任意一条链,或者直接成环)。所以 \(f(x, y, z) = \frac{(x + y + z)!}{(x + y)!} f(x, y, 0)\)。所以可以直接把 \(z\) 忽略,最后答案乘一个东西即可。
所以重新设 \(f(x, y)\) 表示 \(x\) 个 \(1\) 链,\(y\) 个 \(2\) 链的方案数。考虑钦定选择包含编号最小的 \(1\) 链,它可以和另外一个 \(1\) 链拼成一个 \(2\) 链,或者和 \(2\) 链拼成一个 \(0\) 链。所以有:
\[f(x, y) = (x - 1) f(x - 2, y + 1) + y (x + y - 1) f(x - 1, y - 1) \]对称的,考虑包含编号最小的 \(2\) 链,有:
\[f(x, y) = (y - 1) f(x + 1, y - 2) + x (x + y - 1) f(x - 1, y - 1) \]注意到 \(f(x, y), f(x - 1, y - 1), f(x - 2, y + 1), f(x + 1, y - 2)\) 知二推二,所以若维护 \(f(x, y)\) 和 \(f(x + 1, y + 1)\),我们可以从 \((x, y)\) 推到 \((x + 2, y - 1)\),或推到 \((x - 1, y + 2)\)。
考虑倒序操作。对于一次操作,可能会让 \(x, y\) 都 \(+1\),可能让其中一个 \(+2\),另一个 \(-1\)。这些都能通过已有的两个操作凑出来。
可能初始的 \((x, y)\) 不是 \((0, 0)\)。注意到初始的 \(x, y\) 一定满足 \(x \equiv y \pmod 3\),所以先推到 \(\min(x, y)\),再对其中一个不断 \(+3\) 推到它对应的那个值即可。
code
// Problem: H. Multiple of Three Cycles
// Contest: Codeforces - Codeforces Round 884 (Div. 1 + Div. 2)
// URL: https://codeforces.com/problemset/problem/1844/H
// Memory Limit: 256 MB
// Time Limit: 3000 ms
//
// Powered by CP Editor (https://cpeditor.org)
#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mkp make_pair
#define mems(a, x) memset((a), (x), sizeof(a))
using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;
const int maxn = 300100;
const ll mod = 998244353;
inline ll qpow(ll b, ll p) {
ll res = 1;
while (p) {
if (p & 1) {
res = res * b % mod;
}
b = b * b % mod;
p >>= 1;
}
return res;
}
ll n, fa[maxn], sz[maxn], a[maxn][3], fac[maxn], ifac[maxn], f = 1, g = 1, x, y, inv[maxn], ans[maxn];
bool vis[maxn];
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
// (x, y) -> (x + 2, y - 1)
inline void work1() {
ll nf = (g - (x + 1) * (x + y + 1) % mod * f % mod + mod) % mod * inv[y] % mod;
ll ng = ((x + 2) * g % mod + y * (x + y + 2) % mod * nf % mod + mod + mod) % mod;
f = nf;
g = ng;
x += 2;
--y;
}
// (x, y) -> (x - 1, y + 2)
inline void work2() {
ll nf = (g - (y + 1) * (x + y + 1) % mod * f % mod + mod) % mod * inv[x] % mod;
ll ng = ((y + 2) * g % mod + x * (x + y + 2) % mod * nf % mod + mod + mod) % mod;
f = nf;
g = ng;
--x;
y += 2;
}
void solve() {
fac[0] = 1;
scanf("%lld", &n);
inv[1] = 1;
for (int i = 2; i <= n; ++i) {
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
}
for (int i = 1; i <= n; ++i) {
fa[i] = i;
sz[i] = 1;
fac[i] = fac[i - 1] * i % mod;
}
ifac[n] = qpow(fac[n], mod - 2);
for (int i = n - 1; ~i; --i) {
ifac[i] = ifac[i + 1] * (i + 1) % mod;
}
int p = -1;
a[0][1] = n;
for (int i = 1, x, y; i <= n; ++i) {
for (int j = 0; j < 3; ++j) {
a[i][j] = a[i - 1][j];
}
scanf("%d%d", &x, &y);
x = find(x);
y = find(y);
if (x == y) {
--a[i][sz[x] % 3];
if (sz[x] % 3 && p == -1) {
p = i - 1;
}
} else {
--a[i][sz[x] % 3];
--a[i][sz[y] % 3];
fa[x] = y;
sz[y] += sz[x];
++a[i][sz[y] % 3];
}
}
if (p == -1) {
p = n;
}
for (int i = p; i; --i) {
if (i == p) {
ll t = min(a[i][1], a[i][2]);
while (x < t) {
work1();
work2();
}
while (x < a[i][1]) {
work1();
work2();
work1();
}
while (y < a[i][2]) {
work2();
work1();
work2();
}
} else {
if (a[i][1] == a[i + 1][1] + 1 && a[i][2] == a[i + 1][2] + 1) {
work1();
work2();
} else if (a[i][1] == a[i + 1][1] + 2 && a[i][2] == a[i + 1][2] - 1) {
work1();
} else if (a[i][1] == a[i + 1][1] - 1 && a[i][2] == a[i + 1][2] + 2) {
work2();
}
}
ans[i] = f * fac[x + y + a[i][0]] % mod * ifac[x + y] % mod;
}
for (int i = 1; i <= n; ++i) {
printf("%lld\n", ans[i]);
}
}
int main() {
int T = 1;
// scanf("%d", &T);
while (T--) {
solve();
}
return 0;
}