首页 > 其他分享 >Tensor查阅

Tensor查阅

时间:2024-02-28 17:26:42浏览次数:20  
标签:Tensor 查阅 torch t2 张量 索引 维度 tensor

一、张量的创建与类型

张量最基本创建方法和Numpy中创建Array的格式一致,都是创建函数的格式。

1.1 通过列表创建

t = torch.tensor([1, 2])
print(t)
# tensor([1, 2])

1.2 通过元组创建

t = torch.tensor((1, 2))
print(t)
# tensor([1, 2])

1.3 通过Numpy创建

import numpy as np
n = np.array([1, 2])
t = torch.tensor(n)
print(t)
# tensor([1, 2])

1.4 张量的类型

type()不能识别出Tensor内部的数据类型,只能识别出变量的基本类型是Tensor,而dtype方法可以识别出变量具体为哪种类型的Tensor

i = torch.tensor([1, 2])
f = torch.tensor([1.0, 2.0])
print(type(i), i.dtype, sep = ' , ')
print(type(f), f.dtype, sep = ' , ')
# <class 'torch.Tensor'> , torch.int64
# <class 'torch.Tensor'> , torch.float32

1.5 张量类型的转化方法

可以使用.float().int()等方法对张量类型进行转化。

t = torch.tensor([1, 2])
f = t.float()
print(f)
print(t)
# tensor([1., 2.])
# tensor([1, 2])

需要注意的是,这里并不会改变原来t的数据类型。

二、张量的维度

张量的维度中,我们使用的张量如下:

# 一维向量
t1 = torch.tensor((1, 2))
# 二维向量
t2 = torch.tensor([[1, 2, 3], [4, 5, 6]])
# 三维向量
t3 = torch.tensor([[[1, 2], [3, 4]],[[5, 6], [7, 8]]])

2.1 ndim查看张量维度

print(t1.ndim, t2.ndim, t3.ndim, sep = ', ')
# 1, 2, 3
# t1为1维向量
# t2为2维矩阵
# t3为3维张量

2.2 shape&size查看向量的形状

print(t1.shape, t2.shape, t3.shape, sep = ', ')
# torch.Size([2]), torch.Size([2, 3]), torch.Size([2, 2, 2])

print(t1.size(), t2.size(), t3.size(), sep = ', ')
# torch.Size([2]), torch.Size([2, 3]), torch.Size([2, 2, 2])

t1向量torch.Size([2])的理解:向量的形状是1行2列。

t2矩阵torch.Size([2, 3])的理解:包含两个一维向量,每个一维向量的形状是1行3列。

t3矩阵torch.Size([2, 2, 2])的理解:包含两个二维矩阵,每个二维矩阵的形状是2行2列。

2.3 numel查看张量中的元素个数

print(t1.numel(), t2.numel(), t3.numel(), sep = ', ')
# 2, 6, 8
# t1向量中共有2个元素
# t2矩阵中共有6个元素
# t3张量中共有8个元素

2.4 flatten将任意维度张量转为一维张量

t2.flatten()
# tensor([1, 2, 3, 4, 5, 6])

t3.flatten()
# tensor([1, 2, 3, 4, 5, 6, 7, 8])

2.5 reshape任意变形

形变维度的乘积需要等于张量元素的个数。

# 将`t3`变成2×4的矩阵
t3.reshape(2, 4)
#tensor([[1, 2, 3, 4],[5, 6, 7, 8]])

# 将`t3`变成1×4×2的矩阵
t3.reshape(1, 4, 2)
# tensor([[[1, 2], [3, 4], [5, 6], [7, 8]]])

2.6 squeeze&unsqueeze

  • squeeze的作用是压缩张量,去掉维数为1位置的维度
# 将t3的维度变为2×1×4
t_214 = t3.reshape(2, 1, 4)
print(t_214)
# tensor([[[1, 2, 3, 4]], [[5, 6, 7, 8]]])

# 使用squeeze将其变成2×4,去掉维度为1位置的维度
t_24 = t_214.squeeze(1)
print(t_24)
# tensor([[1, 2, 3, 4], [5, 6, 7, 8]])
  • unsqueeze的作用是解压张量,给指定位置加上维数为一的维度。
# 将2×4的维度再转换成2×1×4,在第二个维度上加一维
# 索引是从0开始的。参数0代表第一维,参数1代表第二维,以此类推
print(t_24.unsqueeze(1))
tensor([[[1, 2, 3, 4]], [[5, 6, 7, 8]]])

2.7 特殊的零维张量

Tensor的零维张量只包含一个元素,可以理解为标量,只有大小,没有方向。

# 零维张量的创建只有一个数,不具备一维或多维的概念
t0 = torch.tensor(1)

# 因为它是标量,所以维度是0
print(t0.ndim)
# 0

# 因为它是标量,所以也不具有形状
print(t0.shape)
# torch.Size([])

# 它没有维度,但是有一个数
print(t0.numel())
# 1

2.8 .item():标量转化为数值

在很多情况下,我们需要将最终计算的结果张量转为单独的数值进行输出。

n = torch.tensor(1)
print(n)
# tensor(1)

# 使用.item()方法将标量转为python中的数值
n.item()
# 1

2.8 什么是张量

 

Tensor是一个多维数组,它是标量、向量、矩阵的高维拓展。

三、张量的索引

3.1 张量的符号索引

张量是有序序列,我们可以根据每个元素在系统内的顺序位置,来找出特定的元素,也就是索引。

一维张量索引与Python中的索引一样是是从左到右,从0开始的,遵循格式为[start: end: step]

t1 = torch.arange(1, 11)
t1
# tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])

# 取出索引位置是0的元素
t1[0]
# tensor(1)

:张量索引出的结果是零维张量,而不是单独的数。要转化成单独的数还需使用上节介绍的item()方法。

可理解为构成一维张量的是零维张量,而不是单独的数。

3.2 张量的step必须大于0

但在张量中,step必须大于1,否则就会报错。

t1 = torch.arange(1, 11)
t1[ ::-1]
# ValueError: step must be greater than zero

3.3 二维张量的索引

二维张量的索引逻辑和一维张量的索引逻辑相同,二维张量可以视为两个一维张量组合而成。

t2 = torch.arange(1, 17).reshape(4, 4)
t2
#tensor([[ 1,  2,  3,  4],
#        [ 5,  6,  7,  8],
#        [ 9, 10, 11, 12],
#        [13, 14, 15, 16]])

t2[0,1]也可用t2[0][1]的表示。

# 表示索引第一行、第二个(第二列的)元素
t2[0, 1]
# tensor(2)

t2[0][1]
# tensor(2)

但是t2[::2, ::2]t2[::2][ ::2]的索引结果就不同:

t2[::2, ::2]
# tensor([[ 1,  3],
#        [ 9, 11]])

t2[::2][::2]
# tensor([[1, 2, 3, 4]])

t2[::2, ::2]二维索引使用逗号隔开时,可以理解为全局索引,取第一行和第三行的第一列和第三列的元素。

t2[::2][::2]二维索引在两个中括号中时,可以理解为先取了第一行和第三行,构成一个新的二维张量,然后在此基础上又间隔2并对所有张量进行索引。

tt = t2[::2]
# tensor([[ 1,  2,  3,  4],
#         [ 9, 10, 11, 12]])
tt[::2]
# tensor([[1, 2, 3, 4]])

3.4 三维张量的索引

设三维张量的shapex、y、z,则可理解为它是由x个二维张量构成,每个二维张量由y个一维张量构成,每个一维张量由z个标量构成。

t3 = torch.arange(1, 28).reshape(3, 3, 3)
t3
# tensor([[[ 1,  2,  3],
#         [ 4,  5,  6],
#         [ 7,  8,  9]],

#         [[10, 11, 12],
#         [13, 14, 15],
#         [16, 17, 18]],

#         [[19, 20, 21],
#         [22, 23, 24],
#         [25, 26, 27]]])

# 索引第二个矩阵中的第二行、第二个元素
t3[1, 1, 1]
# tensor(14)

# 索引第二个矩阵,行和列都是每隔两个取一个
t3[1, ::2, ::2]
# tensor([[10, 12],
#         [16, 18]])

高维张量的思路与低维一样,就是围绕张量的“形状”进行索引。

3.5 张量的函数索引

PyTorch中,我们还可以使用index_select函数指定index来对张量进行索引,index的类型必须为Tensor

  • index_select(dim, index)表示在张量的哪个维度进行索引,索引的位值是多少。
t1 = torch.arange(1, 11)
indices = torch.tensor([1, 2])
# tensor([1, 2])
t1.index_select(0, indices)
# tensor([2, 3])

:这里取出的是位置,而不是取出[1:2]区间内左闭右开的元素。

3.6 二维张量的函数索引

t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#         [ 3,  4,  5],
#         [ 6,  7,  8],
#         [ 9, 10, 11]])

t2.shape
# torch.Size([4, 3])

indices = torch.tensor([1, 2])
t2.index_select(0, indices)
# tensor([[3, 4, 5],
#         [6, 7, 8]])

此时dim参数取值为0,代表在shape的第一个维度上进行索引,即在向量维度进行索引。

PyTorch中很多函数都采用的是第几维的思路,后面会介绍给大家,大家还需勤加练习,适应这种思路。同时使用函数式索引,在习惯后对代码可读性会有很大提升。

在此,我强烈建议阅读:XXXXXXXXXX,读后你一定会对维度有新的认识。

四、张量的合并与分割

4.1 张量的分割

chunk(tensor, chunks, dim)能够按照某个维度(dim)对张量进行均匀切分(chunks),并且返回结果是原张量的视图。

还不了解视图的同学,点击进行学习

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

在第0个维度(shape的第一个数字,代表向量维度)上将t2进行4等分:

# 在矩阵中,第一个维度是行,理解为shape的第一个数
tc = torch.chunk(t2, chunks = 4, dim = 0)
tc
# (tensor([[0, 1, 2]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

根据结果可见:

  1. 返回结果是一个元组,不可变
tc[0] = torch.tensor([[1, 1, 1]])
# TypeError: 'tuple' object does not support item assignment
  1. 元组中的每个值依然是一个二维张量
tc[0]
# tensor([[0, 1, 2]])
  1. 返回的张量tc的一个视图,不是新成了一个对象
# 我们将原张量t2中的数值进行更改
t2[0] = torch.tensor([6, 6, 6])
# 再打印分块后tc的结果
tc
# (tensor([[6, 6, 6]]),
#  tensor([[3, 4, 5]]),
#  tensor([[6, 7, 8]]),
#  tensor([[ 9, 10, 11]]))

若原张量不能均分时,chunk不会报错,会返回次一级均分结果。

# 创建一个4×3的矩阵
t2 = torch.arange(12).reshape(4, 3)
t2
# tensor([[ 0,  1,  2],
#        [ 3,  4,  5],
#        [ 6,  7,  8],
#        [ 9, 10, 11]])

将4行分为3等份,不可分,就会返回2等分的结果:

tc = torch.chunk(t2, chunks = 3, dim = 0)
tc
# (tensor([[0, 2, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

4.2 split函数

split既能进行均分,也能进行自定义切分。需要注意的是split的返回结果也是视图。

# 第二个参数只输入一个数值时表示均分
# 第三个参数表示切分的维度
torch.split(t2, 2, dim = 0)
# (tensor([[0, 1, 2],
#          [3, 4, 5]]), 
#  tensor([[ 6,  7,  8],
#          [ 9, 10, 11]]))

chunk函数不同的是,split第二个参数可以输入一个序列,表示按照序列数值等分:

torch.split(t2, [1,3], dim = 0)
# (tensor([[0, 1, 2]]), 
#  tensor([[ 3,  4,  5],
#          [ 6,  7,  8],
#          [ 9, 10, 11]]))

当第二个参数输入一个序列时,序列的各数值的和必须等于对应维度下形状分量的取值,即shape对应的维度。

例如上述代码中,是按照第一个维度进行切分,而t2总共有4行,因此序列的求和必须等于4,也就是1+3=4,而序列中每个分量的取值,则代表切块大小。

4.3 张量的拼接cat

这里一定要将dim参数与shape返回的结果相对应理解。

a = torch.zeros(2, 3)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

b = torch.ones(2, 3)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

因为在张量ab中,shape的第一个位置是代表向量维度,所以当dim取0时,就是将向量进行合并,向量中的标量数不变:

torch.cat([a, b], dim = 0)
# tensor([[0., 0., 0.],
#         [0., 0., 0.],
#         [1., 1., 1.],
#         [1., 1., 1.]])

dim取1时,shape的第二个位置是代表列,即标量数,就是在列上(标量维度)进行拼接,行数(向量数)不变:

torch.cat([a, b], dim = 1)
# tensor([[0., 0., 0., 1., 1., 1.],
##        [0., 0., 0., 1., 1., 1.]])

dimshape结合理解,是不是清晰明了了?

4.4 张量的堆叠stack

和拼接不同,堆叠不是将元素拆分重装,而是将各参与堆叠的对象分装到一个更高维度的张量里。

a = torch.zeros(2, 3)
a
# tensor([[0., 0., 0.],
#         [0., 0., 0.]])

b = torch.ones(2, 3)
b
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])

堆叠之后,生成一个三维张量:

torch.stack([a, b], dim = 0)
# tensor([[[0., 0., 0.],
#          [0., 0., 0.]],
#         [[1., 1., 1.],
#          [1., 1., 1.]]])

torch.stack([a, b], dim = 0).shape
# torch.Size([2, 2, 3])

此例中,就是将两个维度为1×2×3的张量堆叠为一个2×2×3的张量。

4.5 catstack的区别

拼接之后维度不变,堆叠之后维度升高。拼接是把一个个元素单独提取出来之后再放到二维张量里,而堆叠则是直接将两个二维向量封装到一个三维张量中。因此,堆叠的要求更高,参与堆叠的张量必须形状完全相同。

4.6 python中的拼接和堆叠

a = [1, 2]
b = [3, 4]

cat拼接操作与listextend相似,不会改变维度,只会在已有框架内增加元素:

a.extend(b)
a
# [1, 2, 3, 4]

stack堆叠操作与listappend相似,会改变维度:

a = [1, 2]
b = [3, 4]
a.append(b)
a
# [1, 2, [3, 4]]

参考:https://zhuanlan.zhihu.com/p/438085414

标签:Tensor,查阅,torch,t2,张量,索引,维度,tensor
From: https://www.cnblogs.com/qev211/p/18041114

相关文章

  • opencv读取图像和pillow读取图像的转为torch.tensor的区别
    问题描述:有一个git源码是使用pillow读取图像,然后转为tensor后进行resize操作,但是我现在接收到的图像数据是opencv格式的,最简单的操作是我直接将opencv的格式转为pil格式,然后继续下一步就行。但是这样就多了一个数据转换,所以不想这么干,简介的步骤就是将opencv的numpy格式的数据直......
  • TensorFlow学习记录
    TensorFlow,这是个很形象的比喻,意思是张量(Tensor)在神经网络中流动(Flow)。在数学中,张量是一种几何实体(对应的有一个概念叫矢量),广义上可以表示任何形式的数据。在NumPy等数学计算库或TensorFlow等深度学习库中,我们通常使用多维数组来描述张量,所以不能叫做矩阵,矩阵只是二维的数......
  • 神经网络优化篇:详解TensorFlow
    TensorFlow先提一个启发性的问题,假设有一个损失函数\(J\)需要最小化,在本例中,将使用这个高度简化的损失函数,\(Jw=w^{2}-10w+25\),这就是损失函数,也许已经注意到该函数其实就是\({(w-5)}^{2}\),如果把这个二次方式子展开就得到了上面的表达式,所以使它最小的\(w\)值是5,但假设不知道......
  • 【深度学习】TensorFlow实现线性回归,代码演示。全md文档笔记(代码文档已分享)
    本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体......
  • 【LLMOps】Triton + TensorRT-LLM部署QWen
    背景TensorRT-LLM是Nvidia官方推出的大模型推理加速框架,目前只对部分显卡型号有做定制加速。最近新出的ChatwithRTX也是基于TensorRT-LLM进行的本地推理。TensorRT-LLM支持PagedAttention、FlashAttention、SafeTensor等手动,某些社区号称吞吐能力测试结果超过vLLM。准备显......
  • tensorflow serving: REST request
    1.savetrainedmodel#inmodulefileoftfxcomponenttrainerdef_apply_preprocessing(raw_features,tft_layer):transformed_features=tft_layer(raw_features)if_LABEL_KEYinraw_features:transformed_label=transformed_features.pop(_......
  • 机器视觉-tensorBoard使用说明
    tensorboard功能Yolov8源码已经集成了很多个metrics监控系统,源码位置:ultralytics\utils\callbacks\,包括wandb、tensorboard、clearml等等.和其他系统相比,tensorboard功能较弱.yolov8自动集成tensorboard功能包括:查看学习率查看mAP/precision/recall指标......
  • tensorflow distributed training in tfx pipeline run by kubeflow
    1.deployworker,parameterserveronkubernetescluster1.1buildcontainerimageofworker,parameterserver$gitclonehttps://github.com/tensorflow/ecosystem.git$cdecosystem/distribution_strategy$sudonerdctlbuild--no-cache-ttf_std_server:......
  • TensorBoard标量图中的平滑曲线是如何做的平滑?—— tensorflow TensorBoard标量图中“
    TensorFlow的tensorboard的平滑曲线的实现代码:使用“指数移动平均”技术实现。地址:https://github.com/tensorflow/tensorboard/blob/34877f15153e1a2087316b9952c931807a122aa7/tensorboard/components/vz_line_chart2/line-chart.ts#L699privateresmoothDataset(datase......
  • conda安装gpu版本pytorch与gpu版本tensorflow
    创建环境进入环境nvidia-smi查看cuda版本,根据cuda版本安装对应版本的pytorch,在pytorch官网可以查看,版本不合适可以使用较低版本cuda的torch,使用官网提供的命令行安装即可,importtorch``print(torch.cuda.is_available())验证安装结果。tensorflow的安装要在环境中安装cudatoolki......