首页 > 其他分享 >ACM常用模板

ACM常用模板

时间:2024-02-04 10:45:50浏览次数:33  
标签:常用 return int res ll ACM vector const 模板

useful skill

连续区间求和

ll sum(ll l,ll r){
    return (l+r)*(r-l+1)/2;    
}

内置位运算

__builtin_ffs(x):返回x中最后一个为1的位是从后向前的第几位,如__builtin_ffs(0x789)=1, __builtin_ffs(0x78c)=3。于是,__builtin_ffs(x) - 1就是x中最后一个为1的位的位置。

__builtin_popcount(x):x中1的个数。

__builtin_ctz(x):x末尾0的个数。x=0时结果未定义。

__builtin_clz(x):x前导0的个数。x=0时结果未定义。

__builtin_parity(x):x中1的奇偶性。

jiangly取模类

template<class T>
constexpr T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
 
constexpr i64 mul(i64 a, i64 b, i64 p) {
    i64 res = a * b - i64(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
template<i64 P>
struct MLong {
    i64 x;
    constexpr MLong() : x{} {}
    constexpr MLong(i64 x) : x{norm(x % getMod())} {}
     
    static i64 Mod;
    constexpr static i64 getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(i64 Mod_) {
        Mod = Mod_;
    }
    constexpr i64 norm(i64 x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr i64 val() const {
        return x;
    }
    explicit constexpr operator i64() const {
        return x;
    }
    constexpr MLong operator-() const {
        MLong res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MLong inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MLong &operator*=(MLong rhs) & {
        x = mul(x, rhs.x, getMod());
        return *this;
    }
    constexpr MLong &operator+=(MLong rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MLong &operator-=(MLong rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MLong &operator/=(MLong rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MLong operator*(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MLong operator+(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MLong operator-(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MLong operator/(MLong lhs, MLong rhs) {
        MLong res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MLong &a) {
        i64 v;
        is >> v;
        a = MLong(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MLong &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MLong lhs, MLong rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MLong lhs, MLong rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
i64 MLong<0LL>::Mod = i64(1E18) + 9;
 
template<int P>
struct MInt {
    int x;
    constexpr MInt() : x{} {}
    constexpr MInt(i64 x) : x{norm(x % getMod())} {}
     
    static int Mod;
    constexpr static int getMod() {
        if (P > 0) {
            return P;
        } else {
            return Mod;
        }
    }
    constexpr static void setMod(int Mod_) {
        Mod = Mod_;
    }
    constexpr int norm(int x) const {
        if (x < 0) {
            x += getMod();
        }
        if (x >= getMod()) {
            x -= getMod();
        }
        return x;
    }
    constexpr int val() const {
        return x;
    }
    explicit constexpr operator int() const {
        return x;
    }
    constexpr MInt operator-() const {
        MInt res;
        res.x = norm(getMod() - x);
        return res;
    }
    constexpr MInt inv() const {
        assert(x != 0);
        return power(*this, getMod() - 2);
    }
    constexpr MInt &operator*=(MInt rhs) & {
        x = 1LL * x * rhs.x % getMod();
        return *this;
    }
    constexpr MInt &operator+=(MInt rhs) & {
        x = norm(x + rhs.x);
        return *this;
    }
    constexpr MInt &operator-=(MInt rhs) & {
        x = norm(x - rhs.x);
        return *this;
    }
    constexpr MInt &operator/=(MInt rhs) & {
        return *this *= rhs.inv();
    }
    friend constexpr MInt operator*(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res *= rhs;
        return res;
    }
    friend constexpr MInt operator+(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res += rhs;
        return res;
    }
    friend constexpr MInt operator-(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res -= rhs;
        return res;
    }
    friend constexpr MInt operator/(MInt lhs, MInt rhs) {
        MInt res = lhs;
        res /= rhs;
        return res;
    }
    friend constexpr std::istream &operator>>(std::istream &is, MInt &a) {
        i64 v;
        is >> v;
        a = MInt(v);
        return is;
    }
    friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) {
        return os << a.val();
    }
    friend constexpr bool operator==(MInt lhs, MInt rhs) {
        return lhs.val() == rhs.val();
    }
    friend constexpr bool operator!=(MInt lhs, MInt rhs) {
        return lhs.val() != rhs.val();
    }
};
 
template<>
int MInt<0>::Mod = 998244353;
 
template<int V, int P>
constexpr MInt<P> CInv = MInt<P>(V).inv();
 
constexpr int P = 1000000007;
using Z = MInt<P>;

其他

高精

const int base = 1000000000;
const int base_digits = 9; // 分解为九个数位一个数字
struct bigint {
    vector<int> a;
    int sign;

    bigint() : sign(1) {}
    bigint operator-() const {
        bigint res = *this;
        res.sign = -sign;
        return res;
    }
    bigint(long long v) {
        *this = v;
    }
    bigint(const string &s) {
        read(s);
    }
    void operator=(const bigint &v) {
        sign = v.sign;
        a = v.a;
    }
    void operator=(long long v) {
        a.clear();
        sign = 1;
        if (v < 0) sign = -1, v = -v;
        for (; v > 0; v = v / base) {
            a.push_back(v % base);
        }
    }

    // 基础加减乘除
    bigint operator+(const bigint &v) const {
        if (sign == v.sign) {
            bigint res = v;
            for (int i = 0, carry = 0; i < (int)max(a.size(), v.a.size()) || carry; ++i) {
                if (i == (int)res.a.size()) {
                    res.a.push_back(0);
                }
                res.a[i] += carry + (i < (int)a.size() ? a[i] : 0);
                carry = res.a[i] >= base;
                if (carry) {
                    res.a[i] -= base;
                }
            }
            return res;
        }
        return *this - (-v);
    }
    bigint operator-(const bigint &v) const {
        if (sign == v.sign) {
            if (abs() >= v.abs()) {
                bigint res = *this;
                for (int i = 0, carry = 0; i < (int)v.a.size() || carry; ++i) {
                    res.a[i] -= carry + (i < (int)v.a.size() ? v.a[i] : 0);
                    carry = res.a[i] < 0;
                    if (carry) {
                        res.a[i] += base;
                    }
                }
                res.trim();
                return res;
            }
            return -(v - *this);
        }
        return *this + (-v);
    }
    void operator*=(int v) {
        check(v);
        for (int i = 0, carry = 0; i < (int)a.size() || carry; ++i) {
            if (i == (int)a.size()) {
                a.push_back(0);
            }
            long long cur = a[i] * (long long)v + carry;
            carry = (int)(cur / base);
            a[i] = (int)(cur % base);
        }
        trim();
    }
    void operator/=(int v) {
        check(v);
        for (int i = (int)a.size() - 1, rem = 0; i >= 0; --i) {
            long long cur = a[i] + rem * (long long)base;
            a[i] = (int)(cur / v);
            rem = (int)(cur % v);
        }
        trim();
    }
    int operator%(int v) const {
        if (v < 0) {
            v = -v;
        }
        int m = 0;
        for (int i = a.size() - 1; i >= 0; --i) {
            m = (a[i] + m * (long long)base) % v;
        }
        return m * sign;
    }

    void operator+=(const bigint &v) {
        *this = *this + v;
    }
    void operator-=(const bigint &v) {
        *this = *this - v;
    }
    bigint operator*(int v) const {
        bigint res = *this;
        res *= v;
        return res;
    }
    bigint operator/(int v) const {
        bigint res = *this;
        res /= v;
        return res;
    }
    void operator%=(const int &v) {
        *this = *this % v;
    }

    bool operator<(const bigint &v) const {
        if (sign != v.sign) return sign < v.sign;
        if (a.size() != v.a.size()) return a.size() * sign < v.a.size() * v.sign;
        for (int i = a.size() - 1; i >= 0; i--)
            if (a[i] != v.a[i]) return a[i] * sign < v.a[i] * sign;
        return false;
    }
    bool operator>(const bigint &v) const {
        return v < *this;
    }
    bool operator<=(const bigint &v) const {
        return !(v < *this);
    }
    bool operator>=(const bigint &v) const {
        return !(*this < v);
    }
    bool operator==(const bigint &v) const {
        return !(*this < v) && !(v < *this);
    }
    bool operator!=(const bigint &v) const {
        return *this < v || v < *this;
    }

    bigint abs() const {
        bigint res = *this;
        res.sign *= res.sign;
        return res;
    }
    void check(int v) { // 检查输入的是否为负数
        if (v < 0) {
            sign = -sign;
            v = -v;
        }
    }
    void trim() { // 去除前导零
        while (!a.empty() && !a.back()) a.pop_back();
        if (a.empty()) sign = 1;
    }
    bool isZero() const { // 判断是否等于零
        return a.empty() || (a.size() == 1 && !a[0]);
    }
    friend bigint gcd(bigint a,bigint b){
        int tims(0);if(a<b) swap(a,b);
        while(!(a%2)&&!(b%2)) a=a/2,b=b/2,++tims;
        while(!(a==b)){
            int t1(a%2),t2(b%2);
            !t1?a=a/2:(!t2?b=b/2:a=a-b);
            if(a<b) swap(a,b);
        }
        while(tims--) a=a*2;
        return a;
    }
    friend bigint lcm(const bigint &a, const bigint &b) {
        return a / gcd(a, b) * b;
    }
    friend bigint qpow(bigint a, bigint n){
        bigint res = 1;
        while (n>0){
            if (n%2==1) res = res * a;
            a = a * a;
            n /= 2;
        }
        return res;
    }
    friend bigint sqrt(bigint x,bigint y){
        if(x==1) return x;
        bigint l=0,r=x+1;
        while(l<r){
            bigint mid=(l+r)/2;
            if(qpow(mid,y)>x) r=mid;
            else l=mid+1;
        }
        return l-1;
    }
    friend bigint factorial(bigint x){
        bigint ans=1;
        for(bigint i=1;i<=x;i+=1) ans*=i;
        return ans;
    }
    void read(const string &s) {
        sign = 1;
        a.clear();
        int pos = 0;
        while (pos < (int)s.size() && (s[pos] == '-' || s[pos] == '+')) {
            if (s[pos] == '-') sign = -sign;
            ++pos;
        }
        for (int i = s.size() - 1; i >= pos; i -= base_digits) {
            int x = 0;
            for (int j = max(pos, i - base_digits + 1); j <= i; j++) x = x * 10 + s[j] - '0';
            a.push_back(x);
        }
        trim();
    }
    friend istream &operator>>(istream &stream, bigint &v) {
        string s;
        stream >> s;
        v.read(s);
        return stream;
    }
    friend ostream &operator<<(ostream &stream, const bigint &v) {
        if (v.sign == -1) stream << '-';
        stream << (v.a.empty() ? 0 : v.a.back());
        for (int i = (int)v.a.size() - 2; i >= 0; --i)
            stream << setw(base_digits) << setfill('0') << v.a[i];
        return stream;
    }

    /* 大整数乘除大整数部分 */
    typedef vector<long long> vll;
    bigint operator*(const bigint &v) const { // 大整数乘大整数
        vector<int> a6 = convert_base(this->a, base_digits, 6);
        vector<int> b6 = convert_base(v.a, base_digits, 6);
        vll a(a6.begin(), a6.end());
        vll b(b6.begin(), b6.end());
        while (a.size() < b.size()) a.push_back(0);
        while (b.size() < a.size()) b.push_back(0);
        while (a.size() & (a.size() - 1)) a.push_back(0), b.push_back(0);
        vll c = karatsubaMultiply(a, b);
        bigint res;
        res.sign = sign * v.sign;
        for (int i = 0, carry = 0; i < (int)c.size(); i++) {
            long long cur = c[i] + carry;
            res.a.push_back((int)(cur % 1000000));
            carry = (int)(cur / 1000000);
        }
        res.a = convert_base(res.a, 6, base_digits);
        res.trim();
        return res;
    }
    friend pair<bigint, bigint> divmod(const bigint &a1,
                                       const bigint &b1) { // 大整数除大整数,同时返回答案与余数
        int norm = base / (b1.a.back() + 1);
        bigint a = a1.abs() * norm;
        bigint b = b1.abs() * norm;
        bigint q, r;
        q.a.resize(a.a.size());
        for (int i = a.a.size() - 1; i >= 0; i--) {
            r *= base;
            r += a.a[i];
            int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
            int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
            int d = ((long long)base * s1 + s2) / b.a.back();
            r -= b * d;
            while (r < 0) r += b, --d;
            q.a[i] = d;
        }
        q.sign = a1.sign * b1.sign;
        r.sign = a1.sign;
        q.trim();
        r.trim();
        return make_pair(q, r / norm);
    }
    static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
        vector<long long> p(max(old_digits, new_digits) + 1);
        p[0] = 1;
        for (int i = 1; i < (int)p.size(); i++) p[i] = p[i - 1] * 10;
        vector<int> res;
        long long cur = 0;
        int cur_digits = 0;
        for (int i = 0; i < (int)a.size(); i++) {
            cur += a[i] * p[cur_digits];
            cur_digits += old_digits;
            while (cur_digits >= new_digits) {
                res.push_back((int)(cur % p[new_digits]));
                cur /= p[new_digits];
                cur_digits -= new_digits;
            }
        }
        res.push_back((int)cur);
        while (!res.empty() && !res.back()) res.pop_back();
        return res;
    }
    static vll karatsubaMultiply(const vll &a, const vll &b) {
        int n = a.size();
        vll res(n + n);
        if (n <= 32) {
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    res[i + j] += a[i] * b[j];
                }
            }
            return res;
        }

        int k = n >> 1;
        vll a1(a.begin(), a.begin() + k);
        vll a2(a.begin() + k, a.end());
        vll b1(b.begin(), b.begin() + k);
        vll b2(b.begin() + k, b.end());

        vll a1b1 = karatsubaMultiply(a1, b1);
        vll a2b2 = karatsubaMultiply(a2, b2);

        for (int i = 0; i < k; i++) a2[i] += a1[i];
        for (int i = 0; i < k; i++) b2[i] += b1[i];

        vll r = karatsubaMultiply(a2, b2);
        for (int i = 0; i < (int)a1b1.size(); i++) r[i] -= a1b1[i];
        for (int i = 0; i < (int)a2b2.size(); i++) r[i] -= a2b2[i];

        for (int i = 0; i < (int)r.size(); i++) res[i + k] += r[i];
        for (int i = 0; i < (int)a1b1.size(); i++) res[i] += a1b1[i];
        for (int i = 0; i < (int)a2b2.size(); i++) res[i + n] += a2b2[i];
        return res;
    }

    void operator*=(const bigint &v) {
        *this = *this * v;
    }
    bigint operator/(const bigint &v) const {
        return divmod(*this, v).first;
    }
    void operator/=(const bigint &v) {
        *this = *this / v;
    }
    bigint operator%(const bigint &v) const {
        return divmod(*this, v).second;
    }
    void operator%=(const bigint &v) {
        *this = *this % v;
    }
};

高精2

const int MAXN = 10010;  
struct BInt  
{  
    int len, s[MAXN];  
    BInt () 
    {  
        memset(s, 0, sizeof(s));  
        len = 1;  
    }  
    BInt (int num) { *this = num; }  
    BInt (const char *num) { *this = num; }
    BInt operator = (const int num)  
    {  
        char s[MAXN];  
        sprintf(s, "%d", num);
        *this = s;  
        return *this;
    }  
    BInt operator = (const char *num)  
    {  
        for(int i = 0; num[i] == '0'; num++) ; 
        len = strlen(num);  
        for(int i = 0; i < len; i++) s[i] = num[len-i-1] - '0';
        return *this;
    }  
    BInt operator + (const BInt &b) const
    {  
        BInt c;  
        c.len = 0;  
        for(int i = 0, g = 0; g || i < max(len, b.len); i++)  
        {  
            int x = g;  
            if(i < len) x += s[i];  
            if(i < b.len) x += b.s[i];  
            c.s[c.len++] = x % 10;
            g = x / 10;  
        }  
        return c;  
    }  
    BInt operator += (const BInt &b)
    {  
        *this = *this + b;  
        return *this;  
    }  
    void clean() 
    {  
        while(len > 1 && !s[len-1]) len--; 
    }   
    BInt operator * (const BInt &b)
    {  
        BInt c;  
        c.len = len + b.len;  
        for(int i = 0; i < len; i++)  
        {  
            for(int j = 0; j < b.len; j++)  
            {  
                c.s[i+j] += s[i] * b.s[j];
            }  
        }  
        for(int i = 0; i < c.len; i++) 
        {  
            c.s[i+1] += c.s[i]/10;
            c.s[i] %= 10;
        }  
        c.clean();
        return c;  
    }  
    BInt operator *= (const BInt &b)  
    {  
        *this = *this * b;  
        return *this;  
    }  
    BInt operator - (const BInt &b)
    {  
        BInt c;  
        c.len = 0;  
        for(int i = 0, g = 0; i < len; i++)  
        {  
            int x = s[i] - g;  
            if(i < b.len) x -= b.s[i];  
            if(x >= 0) g = 0; 
            else  
            {  
                g = 1;  
                x += 10;  
            }  
            c.s[c.len++] = x;  
        }  
        c.clean();  
        return c;   
    }  
    BInt operator -= (const BInt &b)  
    {  
        *this = *this - b;  
        return *this;  
    }  
    BInt operator / (const BInt &b)  
    {  
        BInt c, f = 0; 
        for(int i = len-1; i >= 0; i--)  
        {  
            f = f*10;  
            f.s[0] = s[i]; 
            while(f >= b)  
            {  
                f -= b;  
                c.s[i]++;  
            }  
        }  
        c.len = len; 
        c.clean();  
        return c;  
    }  
    BInt operator /= (const BInt &b)  
    {  
        *this  = *this / b;  
        return *this;  
    }  
    BInt operator % (const BInt &b) 
    {  
        BInt r = *this / b;  
        r = *this - r*b;  
        r.clean();
        return r;  
    }  
    BInt operator %= (const BInt &b)  
    {  
        *this = *this % b;  
        return *this;  
    }  
    bool operator < (const BInt &b) 
    {  
        if(len != b.len) return len < b.len;  
        for(int i = len-1; i != -1; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] < b.s[i];  
        }  
        return false;  
    }  
    bool operator > (const BInt &b)  
    {  
        if(len != b.len) return len > b.len;  
        for(int i = len-1; i != -1; i--)  
        {  
            if(s[i] != b.s[i]) return s[i] > b.s[i];  
        }  
        return false;  
    }  
    bool operator == (const BInt &b)  
    {  
        return !(*this > b) && !(*this < b);  
    }  
    bool operator != (const BInt &b)  
    {  
        return !(*this == b);  
    }  
    bool operator <= (const BInt &b)  
    {  
        return *this < b || *this == b;  
    }  
    bool operator >= (const BInt &b)  
    {  
        return *this > b || *this == b;  
    }  
    string str() const
    {  
        string res = "";  
        for(int i = 0; i < len; i++) res = char(s[i]+'0')+res;  
        return res;  
    }  
};  

istream& operator >> (istream &in, BInt &x) 
{  
    string s;  
    in >> s;  
    x = s.c_str(); 
    return in;  
}  

ostream& operator << (ostream &out, const BInt &x) 
{  
    out << x.str();  
    return out;  
}

inline BInt fac(BInt x){
	BInt ans=1;
	for(BInt i=1;i<=x;i+=1) ans*=i;
	return ans;
}
inline BInt qpow(BInt a,BInt b){
    BInt x=a,y=b;
	BInt result=1;
	while(y>=1){
		if(y%2==1) result=result*x;
		x=x*x;
		y/=2;
	}
	return result;
}
inline BInt sqrt(BInt x,BInt y){
	if(x==1) return x;
	BInt l=0,r=x+1;
	while(l<r){
		BInt mid=(l+r)/2;
		if(qpow(mid,y)>x) r=mid;
		else l=mid+1;
	}
	return l-1;
}

离散化

template <typename T> struct Compress_ {
    int n, shift = 0; // shift 用于标记下标偏移量
    vector<T> alls;

    Compress_() {}
    Compress_(auto in) : alls(in) {
        init();
    }
    void add(T x) {
        alls.emplace_back(x);
    }
    template <typename... Args> void add(T x, Args... args) {
        add(x), add(args...);
    }
    void init() {
        alls.emplace_back(numeric_limits<T>::max());
        sort(alls.begin(), alls.end());
        alls.erase(unique(alls.begin(), alls.end()), alls.end());
        this->n = alls.size();
    }
    int size() {
        return n;
    }
    int operator[](T x) { // 返回 x 元素的新下标
        return upper_bound(alls.begin(), alls.end(), x) - alls.begin() + shift;
    }
    T Get(int x) { // 根据新下标返回原来元素
        assert(x - shift < n);
        return x - shift < n ? alls[x - shift] : -1;
    }
    bool count(T x) { // 查找元素 x 是否存在
        return binary_search(alls.begin(), alls.end(), x);
    }
    friend auto &operator<<(ostream &o, const auto &j) {
        cout << "{";
        for (auto it : j.alls) {
            o << it << " ";
        }
        return o << "}";
    }
};
using Compress = Compress_<int>;
//不封装简洁版
sort(alls.begin(), alls.end());
alls.erase(unique(alls.begin(), alls.end()), alls.end());
auto get = [&](int x) {
    return lower_bound(alls.begin(), alls.end(), x) - alls.begin();
};

二维前缀和

int main(){
    int n,m;
    cin>>n>>m;
    vector<vector<int>> a(n+1,vector<int>(m+1,0));
    vector<vector<int>> pre(n+1,vector<int>(m+1,0));
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            cin>>a[i][j];
            pre[i][j]=pre[i][j-1]+pre[i-1][j]-pre[i-1][j-1]+a[i][j];
        }
    }
    int maxn=-0x3f3f3f3f;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            for(int k=i;k<=n;k++){
                for(int r=j;r<=m;r++){
                    maxn=max(maxn,pre[k][r]-pre[k][j-1]-pre[i-1][r]+pre[i-1][j-1]);
                }
            }
        }
    }
}

二维差分

#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int a[N][N];
int b[N][N];
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            b[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
        }
    }
    while(m--){
        int sx,sy,ex,ey;
        cin>>sx>>sy>>ex>>ey;
        ++b[sx][sy];
        --b[ex+1][sy];
        --b[sx][ey+1];
        ++b[ex+1][ey+1];
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1]+b[i][j];
        }
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            cout<<a[i][j]<<" ";
        }
        cout<<"\n";
    }
    return 0;
}

数学

进制转换

// 2~36 base converter
struct BaseConverter {
    int s;int t;bool u=false;
    BaseConverter(int source, int target,bool upper) : s(source), t(target),u(upper) {}
    BaseConverter(int source, int target) : s(source), t(target){}
    BaseConverter(bool upper):u(upper){}
    BaseConverter(){}
    string work(const string& source) {
        int v = XTD(source, s);
        return DTX(v, t);
    }
    // 将源进制的数字字符串转为十进制
    int XTD(const string& source, int b) {
        int v = 0;
        int p = 1;
        for (int i = source.length() - 1; i >= 0; --i) {
            int bits = charToDigit(source[i]);
            if (bits == -1 || bits >= b) {
                cerr << "Invalid x in source number.\n";
                return -1;
            }
            v += bits * p;
            p *= b;
        }
        return v;
    }
    // 将十进制的值转为目标进制的字符串
    string DTX(int v, int b) {
        if (v == 0) return "0";
        string res = "";
        while (v > 0) {
            int rem = v % b;
            res = digitToChar(rem) + res;
            v /= b;
        }
        return res;
    }
    // 获取字符对应的数字值
    int charToDigit(char x) {
        if (x >= '0' && x <= '9') {
            return x - '0';
        } else if (x >= 'A' && x <= 'Z') {
            return x - 'A' + 10;
        } else if (x >= 'a' && x <= 'z') {
            return x - 'a' + 10;
        }
        return -1;
    }
    // 获取数字值对应的字符
    char digitToChar(int val) {
        if (val >= 0 && val <= 9) {
            return '0' + val;
        } else if (val >= 10 && val <= 35) {
            if(!u){
                return 'a' + val - 10;
            }else{
                return 'A'+val-10;
            }
        }
        return '\0';
    }
};

求约数

vector<int> get_divisors(int x){
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0){
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
    sort(res.begin(), res.end());
    return res;
}

判质数

bool isPrime(int x){
    if(x<2){
        return false;
    }
    for(int i=2;i<=x/i;i++){
        if(x%i==0){
            return false;
        }
    }
    return true;
}

//常数优化 sqrt(x)/3
bool isPrime(int n) {
    if (n == 1) return false;
    if (n == 2 || n == 3) return true;
    if (n % 6 != 1 && n % 6 != 5) return false;
    for (int i = 5, j = n / i; i <= j; i += 6) {
        if (n % i == 0 || n % (i + 2) == 0) {
            return false;
        }
    }
    return true;
}

分解质因数

map<int,int> cnt;
void divide(int x){
    for(int i=2;i<=x/i;i++){
        if(x%i==0){
            while(x%i==0){
                x/=i;
                cnt[i]++;
            }
        }
    }
    if(x>1) cnt[x]++;
}

GCD&LCM

int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}

//加速版gcd
ll gcd(ll a,ll b){
    int tims(0);if(a<b) swap(a,b);
    while(!(a%2)&&!(b%2)) a=a/2,b=b/2,++tims;
    while(!(a==b)){
        int t1(a%2),t2(b%2);
        !t1?a=a/2:(!t2?b=b/2:a=a-b);
        if(a<b) swap(a,b);
    }
    while(tims--) a=a*2;
    return a;
}

int lcm(int m,int n){
    int g1,b;
    g1 = __gcd(m,n);
    b = (m*n) / g1; //最小公倍数=两数之积/最大公约数
    return b;
}

龟速乘

ll smul(ll a,ll b,ll mod){
	ll res = 0;
	while (b){
		if (b & 1) res = (res + a) % mod;
		a = (a + a) % mod;
		b >>= 1;
	}
	return res%mod;
}

快速幂

ll qpow(ll a, ll n, ll mod){
	ll res = 1;
	while (n){
		if (n & 1) res = res * a % mod;
		a = a * a % mod;
		n >>= 1;
	}
	return res%mod;
}

质数筛

constexpr int N  =1e6+10;
int primes[N], cnt;     // primes[]存储所有素数
bool st[N];         // st[x]存储x是否被筛掉
void get_primes(int n){
    for (int i = 2; i <= n; i ++ ){
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 0; primes[j] <= n / i; j ++ ){
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}

//欧拉筛
vector<int> prime;
auto euler_Prime = [&](int n){
    int cnt=0;
    vector<int> v(n + 1);
    for (int i = 2; i <= n; ++i) {
        if (!v[i]) {
            v[i] = i;cnt+=i;
            prime.push_back(i);
        }
        for (int j = 0; j < prime.size(); ++j) {
            if (prime[j] > v[i] || prime[j] > n / i) break;
            v[i * prime[j]] = prime[j];
            cnt+=prime[j];
        }
    }
    //return sum of 1~n min prime factor
    return cnt; 
};

欧拉函数

int phi(int x){
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0){
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);
    return res;
}

//扩展欧拉定理降幂 p = phi(m) b为次数
auto depow = [&](string str){
    int b=0;
    bool flag=false;
    for(int i=0;i<str.size();i++){
        b=b*10+str[i]-'0';
        if(b>=p){
            flag=true;
            b%=p;
        }
    }
    if(flag){
        b+=p;
    }
    return b;
};

欧拉函数筛

const int N = 1e6+10;
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉
void get_eulers(int n){
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ ){
        if (!st[i]){
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ ){
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0){
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}

Stirling

const int mod = 1e9+7;
const int N = 1e6+100;
int fac[N+2],invfac[N+2];
int qpow(int a,int b,int mod){
    int res=1;while(b){if(b&1){res=res*a%mod;}a=a*a%mod;b>>=1;}return res;
}
int inv(int x){return qpow(x,mod-2,mod);}
void init(int n){
    fac[0] = 1;for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % mod;
    invfac[n] = inv(fac[n]);for (int i = n - 1; i >= 0; --i) invfac[i] = (invfac[i + 1] * (i + 1)) % mod;    
}
int C(int n,int m){
    if (n < m || m < 0) return 0;return fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int S(int n,int k){
    int ans=0;
    for(int i=0;i<=k;i++){
        ans=(ans+mod)%mod;
        ans=(ans+(i%2?-1:1)*C(k,i)%mod*qpow(k-i,n,mod)%mod)%mod;
    }  
    ans=ans*invfac[k]%mod;
    return ans;
}

Catalan

template<typename T>
struct Catalan{
    T c=1;
    T C(int x, int y){
        T m;
        if( x < 0 || y < 0 || y > x ){
            m = 0;
        }
        else if( y == 0 ){
            m = 1;
        }
        else if( y > x / 2 ){
            y = x - y;
            m = C( x , y );
        }
        else{
            m =  C( x - 1, y - 1)*x / y;
        }
        return m;
    };

    T query1(int n){
        for(int i=1;i<=n;i++){
            c=c*(4*i-2)/(i+1);
        }
        return c;
    } 
    T query2(int n,int m){
        return C(n+m,n)-C(n+m,m-1);
    }
    T query3(int n){
        return C(2*n,n)/(n+1);
    }
};

Lucas

struct Lucas{
    ll mod; 
    ll qpow(ll a,ll b){
        ll s=1;
        while(b)
        {
            if(b&1)    s=s*a%mod;
            a=a*a%mod;
            b>>=1;
        }       
        return s;
    }
    ll C(ll n,ll m){
        if(m>n) return 0;
        ll a=1,b=1;
        for(ll i=n-m+1;i<=n;++i)
            a=a*i%mod;
        for(ll i=2;i<=m;++i)
            b=b*i%mod;
        return a*qpow(b,mod-2)%mod;
    }
    ll query(ll n,ll m){
        if(!m) return 1;
        else return (C(n%mod,m%mod)*query(n/mod,m/mod))%mod;
    } 
    Lucas(ll mod){
        this->mod=mod;
    }
};

组合数

const int mod = 1e9+7;
const int N = 1e6+100;
int fac[N+2],invfac[N+2];
int qpow(int a,int b){
    int res=1;while(b){if(b&1){res=res*a%mod;}a=a*a%mod;b>>=1;}return res;
}
int inv(int x){return qpow(x,mod-2);}
void init(int n){
    fac[0] = 1;for (int i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i % mod;
    invfac[n] = inv(fac[n]);for (int i = n - 1; i >= 0; --i) invfac[i] = (invfac[i + 1] * (i + 1)) % mod;    
}
int C(int n,int m){
    if (n < m || m < 0) return 0;return fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int A(int n,int m){
    if (n < m || m < 0) return 0;return fac[n]*invfac[n-m]%mod;
}

// int D[N+2]
//错排:D[i]=(i-1)*(D[i-1]+D[i-2]) D[0]=1,D[1]=0,D[2]=1,D[3]=2;

矩阵运算

using ll = long long;
template <typename T>
class Matrix {
public:
    std::vector<std::vector<T>> mat;
    int rows, cols;
    int mod;
    Matrix(int rows, int cols) : rows(rows), cols(cols) {
        mat.resize(rows, std::vector<T>(cols, 0));
    }
    Matrix(int rows, int cols, const T& initial) : rows(rows), cols(cols) {
        mat.resize(rows, std::vector<T>(cols, initial));
    }
    Matrix(const std::vector<std::vector<T>>& data) {
        rows = static_cast<int>(data.size());
        if (rows > 0) {
            cols = static_cast<int>(data[0].size());
            mat = data;
        } else {
            rows = 0;
            cols = 0;
        }
    }
    Matrix(const Matrix& other) {
        rows = other.rows;
        cols = other.cols;
        mat = other.mat;
    }
    //运算
    Matrix& operator=(const Matrix& other) {
        if (this != &other) {
            rows = other.rows;
            cols = other.cols;
            mat = other.mat;
        }
        return *this;
    }

    Matrix operator+(const T& scalar) const {
        Matrix result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] + scalar;
            }
        }
        return result;
    }
    Matrix operator+(const Matrix& other) const {
        Matrix result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] + other.mat[i][j];
            }
        }
        return result;
    }
    Matrix& operator+=(const Matrix& other) {
        *this = *this + other;
        return *this;
    }
    Matrix& operator+=(const T& scalar) {
        *this = *this + scalar;
        return *this;
    }

    Matrix operator-(const T& scalar) const {
        Matrix result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] - scalar;
            }
        }
        return result;
    }
    Matrix operator-(const Matrix& other) const {
        Matrix result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] - other.mat[i][j];
            }
        }
        return result;
    }
    Matrix& operator-=(const Matrix& other) {
        *this = *this - other;
        return *this;
    }
    Matrix& operator-=(const T& scalar) {
        *this = *this - scalar;
        return *this;
    }

    Matrix operator*(const Matrix& other) const {
        if (cols != other.rows) {
            throw std::invalid_argument("Matrix dimensions do not match for multiplication.");
        }

        Matrix result(rows, other.cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < other.cols; j++) {
                for (int k = 0; k < cols; k++) {
                    result.mat[i][j] += mat[i][k] * other.mat[k][j];
                }
            }
        }
        return result;
    }
    Matrix& operator*=(const Matrix& other) {
        *this = *this * other;
        return *this;
    }

    friend std::ostream& operator<<(std::ostream& os, const Matrix& matrix) {
        for (int i = 0; i < matrix.rows; i++) {
            for (int j = 0; j < matrix.cols; j++) {
                os << matrix.mat[i][j] << " ";
            }
            os << std::endl;
        }
        return os;
    }
    std::vector<T>& operator[](int index) {
        if (index < 0 || index >= rows) {
            throw std::out_of_range("Matrix index out of range.");
        }
        return mat[index];
    }

    static Matrix<T> power(const Matrix<T>& base, int exponent) {
        if (exponent == 0) {
            Matrix<T> result(base.rows, base.cols);
            for (int i = 0; i < base.rows; i++) {
                result.mat[i][i] = 1;
            }
            return result;
        }
        if (exponent % 2 == 0) {
            Matrix<T> half_pow = power(base, exponent / 2);
            return half_pow * half_pow;
        } else {
            return base * power(base, exponent - 1);
        }
    }
    //求行列式
    T determinant(int mod){
        this->mod=mod;
        int res=1,w=1;
        for(int i=0;i<rows;i++){ 
            for(int j=i+1;j<cols;++j){
                while(mat[i][i]){
                    int div=mat[j][i]/mat[i][i];
                    for(int k=i;k<rows;++k){
                        mat[j][k]=(mat[j][k]-1ll*div*mat[i][k]%mod+mod)%mod;
                    }
                    swap(mat[i],mat[j]);w=-w;
                }	
                swap(mat[i],mat[j]);w=-w;
            }
        }
        for(int i=0;i<rows;i++)res=1ll*mat[i][i]*res%mod;
        res=1ll*w*res;
        return (res+mod)%mod;
    }
    //转置
    Matrix<T> transpose() const {
        Matrix<T> result(cols, rows);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[j][i] = mat[i][j];
            }
        }
        return result;
    }
    //点乘
    Matrix<T> EWMultiply(const Matrix& other) const {
        if (rows != other.rows || cols != other.cols) {
            throw std::invalid_argument("Matrix dimensions do not match for element-wise multiplication.");
        }

        Matrix<T> result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] * other.mat[i][j];
            }
        }
        return result;
    }
    Matrix<T> EWMultiply_Vec(const vector<T>& other) const {
        Matrix<T> result(rows, cols);
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                result.mat[i][j] = mat[i][j] * other[i];
            }
        }
        return result;
    }
};
using Matri = Matrix<ll>;

矩阵加速

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
//MatPow
constexpr ll MOD = 1e9+7;
struct Matrix {
	ll s[105][105];
    ll n;
	Matrix(ll n):n(n){
		memset(s, 0, sizeof(s));
	}
	inline void unit() {
		for (ll i = 1; i <= n; i++)
			s[i][i] = 1;
	}
    Matrix operator* (const Matrix &b) const{
        Matrix c(n);
        for (ll i = 1; i <= n; i++) {
            for (ll j = 1; j <= n; j++) {
                for (ll k = 1; k <= n; k++) {
                    c.s[i][j] = (c.s[i][j] + s[i][k] * b.s[k][j]) % MOD;
                }
            }
        }
        return c;
    }
    Matrix operator *= (const Matrix &b){
        *this = *this*b;
        return *this;
    }
    Matrix operator ^(ll b){
        Matrix tmp(n);
        tmp.unit();
        while (b) {
            if (b&1)
                tmp*=*this;
            *this*=*this;
            b >>= 1;
        }
        return tmp;
    }
    Matrix operator ^=(ll b){
        *this=*this^b;
        return *this;
    }
    ll* operator[](ll index) {
        return s[index];
    }
};

博弈论

//1堆n个石子每次最多取m个、最少取1个
struct Bash{
    int n,k;
    Bash(int n,int k):n(n),k(k){};
    bool work(){
        return n%(k+1);//true 为先手赢
    }
};

//有两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜
struct Wythoff{
    int a,b,diff;
    double p=(sqrt((double)5)+1)/double(2);
    Wythoff(int a,int b):a(a),b(b),diff(abs(a-b)){};
    bool work(){
        int r=a<b?a:b;
        if(r==(int)(p*diff)){
            return false;
        }
        return true;
    }
};

//有n堆石子,每堆石子的数量是a1,a2,a3……,二个人依次从这些石子堆中的一个拿取任意的石子,至少一个,最后一个拿光石子的人胜利
struct Nim{
    #define MAXN 50010
    int cnt,s,n;
    int a[MAXN];
    int ans[MAXN][2];
    Nim(int n):n(n){}
    void input(){
        for(int i=0;i<n;i++){
            cin>>a[i];
            s^=a[i];
        }
    }
    bool work(){
        for(int i=0;i<n;i++){
            if(a[i] > (s^a[i])){
                ans[cnt][0] = a[i];
                ans[cnt][1] = s^a[i];
                cnt++;
            }
        }
        return cnt;//先手赢为true
    }
    //输出若先手为胜的走法
    void getWays(){
        for(int i=0;i<cnt;i++){
            cout<<ans[i][0]<<" "<<ans[i][1]<<"\n";
        }
    }
    //使先手为胜的方案的数目 
    int WinCount(){
        return cnt;
    }
    #undef MAXN
};

BSGS&exBSGS

namespace BSGS {
    ll a, b, p;
    map<ll, ll> f;
    inline ll gcd(ll a, ll b) { return b > 0 ? gcd(b, a % b) : a; }
    inline ll qpow(ll n, ll k, int p) {
        ll r = 1;
        for (; k; k >>= 1) {
            if (k & 1) r = r * n % p;
            n = n * n % p;
        }
        return r;
    }
    void exgcd(ll a, ll b, ll &x, ll &y) {
        if (!b) {
            x = 1, y = 0;
        } else {
            exgcd(b, a % b, x, y);
            ll t = x;
            x = y;
            y = t - a / b * y;
        }
    }
    ll inv(ll a, ll b) {
        ll x, y;
        exgcd(a, b, x, y);
        return (x % b + b) % b;
    }
    ll bsgs(ll a, ll b, ll p) {
        f.clear();
        int m = ceil(sqrt(p));
        b %= p;
        for (int i = 1; i <= m; i++) {
            b = b * a % p;
            f[b] = i;
        }
        ll tmp = qpow(a, m, p);
        b = 1;
        for (int i = 1; i <= m; i++) {
            b = b * tmp % p;
            if (f.count(b) > 0) return (i * m - f[b] + p) % p;
        }
        return -1;
    }
    ll exbsgs(ll a, ll b, ll p) { //a^x ≡ b(mod p)
        a %= p,b %= p;
        if (b == 1 || p == 1) return 0;
        ll g = gcd(a, p), k = 0, na = 1;
        while (g > 1) {
            if (b % g != 0) return -1;
            k++;
            b /= g;
            p /= g;
            na = na * (a / g) % p;
            if (na == b) return k;
            g = gcd(a, p);
        }
        ll f = bsgs(a, b * inv(na, p) % p, p);
        if (f == -1) return -1;
        return f + k;
    }
} using namespace BSGS;

exCRT

using ll = long long;
const int N = 1e5+10;
ll Ai[N], Mi[N];
int n; 
constexpr int qpow(int n, int k, int p) {
    int r = 1;
    for (; k; k >>= 1, n = n * n % p)
        if (k & 1) r = r * n % p;
    return r;
}
constexpr ll mul(ll a, ll b, ll p) {
    ll res = a * b - ll(1.L * a * b / p) * p;
    res %= p;
    if (res < 0) {
        res += p;
    }
    return res;
}
ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) { x = 1, y = 0; return a; }
    ll gcd = exgcd(b, a % b, x, y), tp = x;
    x = y, y = tp - a / b * y;
    return gcd;
}
ll excrt() {
    ll x, y, k;
    ll M = Mi[1], ans = Ai[1];
    for (int i = 2; i <= n; ++ i) {
        ll a = M, b = Mi[i], c = (Ai[i] - ans % b + b) % b;
        ll gcd = exgcd(a, b, x, y), bg = b / gcd;
        if (c % gcd != 0) return -1;
        x = mul(x, c / gcd, bg);
        ans += x * M;
        M *= bg;
        ans = (ans % M + M) % M;
    }
    return (ans % M + M) % M;
}

exGCD

int exgcd(int a, int b, int &x, int &y) {
    if (!b) {
        x = 1, y = 0;
        return a;
    }
    int g = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}
//求逆元,要求a与p互质
int inv(int a, int p){
    int x, y;
    exgcd(a, p, x, y);
    return (p + x % p) % p;
}
auto calc = [&](int a,int b,int c)->int{
    int x, y, d = exgcd(a, b, x, y);
    if (c % d != 0) {
        return -1;
    }
    return (x*c/d%b/d+b/d)%b/d;
};

exLucas

struct exlucas{
    using ll = long long;
    int p;
    exlucas(int p):p(p){}
    ll cnt,pr[1010],al[1010];
    void exgcd(ll a,ll b,ll &x,ll &y){
        if (!b) return (void)(x=1,y=0);
        exgcd(b,a%b,x,y);
        ll tmp=x;x=y;y=tmp-a/b*y;
    }
    ll inv(ll a,ll p){
        ll x,y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    ll qpow(ll a,ll b,ll p){
        ll t=1;
        a%=p;
        for(;b;b>>=1){
            if(b&1) t=t*a%p;
            a=a*a%p;
        }
        return t;
    }
    ll fac(ll n,ll p,ll ppa){
        if (n==0) return 1;
        ll cir=1,rem=1;
        for (ll i=1;i<=ppa;i++) if(i%p) cir=cir*i%ppa;
        cir=qpow(cir,n/ppa,ppa);
        for(ll i=ppa*(n/ppa);i<=n;i++) if(i%p) rem=rem*(i%ppa)%ppa;
        return fac(n/p,p,ppa)*cir%ppa*rem%ppa;
    }
    ll sum_fac(ll n,ll p){
        return n<p?0:sum_fac(n/p,p)+(n/p);
    }
    ll C(ll n,ll m,ll p,ll ppa){
        ll fz=fac(n,p,ppa),fm1=inv(fac(m,p,ppa),ppa),fm2=inv(fac(n-m,p,ppa),ppa);
        ll mi=qpow(p,sum_fac(n,p)-sum_fac(m,p)-sum_fac(n-m,p),ppa);
        return fz*fm1%ppa*fm2%ppa*mi%ppa;
    }
    void split(ll n,ll m){
        ll P=p;
        for(ll i=2;i*i<=p;i++){
            if(!(P%i)){
                ll ppa=1;
                while(!(P%i)) ppa*=i,P/=i;
                pr[++cnt]=ppa;
                al[cnt]=C(n,m,i,ppa);
            }
        }
        if(P!=1) pr[++cnt]=P,al[cnt]=C(n,m,P,P);
    }
    ll crt(){
        ll ans=0;
        for(ll i=1;i<=cnt;i++){
            ll M=p/pr[i],T=inv(M,pr[i]);
            ans=(ans+al[i]*M%p*T%p)%p;
        }
        return ans;
    }
    ll work(ll n,ll m){
        split(n,m);
        return crt();
    }
};

高斯消元

const int N = 110;
struct Gauss{
    const double eps = 1e-8;
    double a[N][N];
    ll n;
    Gauss(int n):n(n){}
    ll gauss(){
        ll c, r;
        for (c = 0, r = 0; c < n; c ++ ){
            ll t = r;
            for (int i = r; i < n; i ++ )   
                if (fabs(a[i][c]) > fabs(a[t][c]))
                    t = i;
            if (fabs(a[t][c]) < eps) continue;
            for (int j = c; j < n + 1; j ++ ) swap(a[t][j], a[r][j]);   
            for (int j = n; j >= c; j -- ) a[r][j] /= a[r][c];    
            for (int i = r + 1; i < n; i ++ )   
                if (fabs(a[i][c]) > eps)
                    for (int j = n; j >= c; j -- )
                        a[i][j] -= a[r][j] * a[i][c];
            r ++ ;
        }
        if (r < n){
            for (int i = r; i < n; i ++ )
                if (fabs(a[i][n]) > eps)
                    return 2;
            return 1;
        }
        for (int i = n - 1; i >= 0; i -- )
            for (int j = i + 1; j < n; j ++ )
                a[i][n] -= a[i][j] * a[j][n];
        return 0;
    }
    void work(){
        int t=gauss();
        if(t==0){
            for (int i = 0; i < n; i ++ ){
                if (fabs(a[i][n]) < eps) a[i][n] = abs(a[i][n]);
                cout<<a[i][n]<<"\n";
            }
        }
        else if (t == 1) cout << "Infinite group solutions\n";
        else cout << "No solution\n";
    }
};

Pollard Rho & Miller Rabin

ll mul(ll a, ll b, ll m) {
    return static_cast<__int128_t>(a) * b % m;
}
ll power(ll a, ll b, ll m) {
    ll res = 1 % m;
    for (; b; b >>= 1, a = mul(a, a, m))
        if (b & 1)
            res = mul(res, a, m);
    return res;
}
bool isprime(ll n) {
    if (n < 2)
        return false;
    static constexpr int A[] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
    int s = __builtin_ctzll(n - 1);
    ll d = (n - 1) >> s;
    for (auto a : A) {
        if (a == n)
            return true;
        ll x = power(a, d, n);
        if (x == 1 || x == n - 1)
            continue;
        bool ok = false;
        for (int i = 0; i < s - 1; ++i) {
            x = mul(x, x, n);
            if (x == n - 1) {
                ok = true;
                break;
            }
        }
        if (!ok)
            return false;
    }
    return true;
}
std::vector<ll> factorize(ll n) {
    std::vector<ll> p;
    std::function<void(ll)> f = [&](ll n) {
        if (n <= 10000) {
            for (int i = 2; i * i <= n; ++i)
                for (; n % i == 0; n /= i)
                    p.push_back(i);
            if (n > 1)
                p.push_back(n);
            return;
        }
        if (isprime(n)) {
            p.push_back(n);
            return;
        }
        auto g = [&](ll x) {
            return (mul(x, x, n) + 1) % n;
        };
        ll x0 = 2;
        while (true) {
            ll x = x0;
            ll y = x0;
            ll d = 1;
            ll power = 1, lam = 0;
            ll v = 1;
            while (d == 1) {
                y = g(y);
                ++lam;
                v = mul(v, std::abs(x - y), n);
                if (lam % 127 == 0) {
                    d = std::__gcd(v, n);
                    v = 1;
                }
                if (power == lam) {
                    x = y;
                    power *= 2;
                    lam = 0;
                    d = std::__gcd(v, n);
                    v = 1;
                }
            }
            if (d != n) {
                f(d);
                f(n / d);
                return;
            }
            ++x0;
        }
    };
    f(n);
    std::sort(p.begin(), p.end());
    return p;
}

多项式(zhoukangyang poly)

#define Fo(i, j, k) for(int i = (j); i <= (k); ++i)
#define Rep(i, j, k) for(int i = (j); i >= (k); --i)
#define sz(a) ((int) (a).size())
const int mod = 998244353, _G = 3, N = (1 << 21), inv2 = (mod + 1) / 2;
#define add(a, b) (a + b >= mod ? a + b - mod : a + b)
#define dec(a, b) (a < b ? a - b + mod : a - b)
int qpow(int x, int y = mod - 2) {
	int res = 1;
	for(; y; x = (ll) x * x % mod, y >>= 1) if(y & 1) res = (ll) res * x % mod;
	return res;
}
int fac[N + 1], ifac[N + 1], inv[N + 1];
void init(int x) {
	fac[0] = ifac[0] = inv[1] = 1;
	Fo(i, 2, x) inv[i] = (ll) inv[mod % i] * (mod - mod / i) % mod;
	Fo(i, 1, x) fac[i] = (ll) fac[i - 1] * i % mod, ifac[i] = (ll) ifac[i - 1] * inv[i] % mod;
}
int C(int x, int y) {
	return y < 0 || x < y ? 0 : (ll) fac[x] * ifac[y] % mod * ifac[x - y] % mod;
}
inline int sgn(int x) {
	return (x & 1) ? mod - 1 : 1;
}
int rt[N], Lim;
void Pinit(int x) {
	for(Lim = 1; Lim <= x; Lim <<= 1) ;
	for(int i = 1; i < Lim; i <<= 1) {
		int sG = qpow (_G, (mod - 1) / (i << 1));
		rt[i] = 1;
		Fo(j, i + 1, i * 2 - 1) rt[j] = (ll) rt[j - 1] * sG % mod;
	}
}
struct poly {
	vector<int> a;
	int size() { return sz(a); }
	int & operator [] (int x) { return a[x]; }
	int v(int x) { return x < 0 || x >= sz(a) ? 0 : a[x]; }
	void clear() { vector<int> ().swap(a); }
	void rs(int x = 0) { a.resize(x); }
	poly (int n = 0) { rs(n); }
	poly (vector<int> o) { a = o; }
	poly (const poly &o) { a = o.a; }
	poly Rs(int x = 0) { vector<int> res = a; res.resize(x); return res; }
	inline void dif() {
		int n = sz(a);
		for (int l = n >> 1; l >= 1; l >>= 1) 
			for(int j = 0; j < n; j += l << 1) 
				for(int k = 0, *w = rt + l; k < l; k++, w++) {
					int x = a[j + k], y = a[j + k + l];
					a[j + k] = add(x, y);
					a[j + k + l] = (ll) * w * dec(x, y) % mod;
				}
	}
	void dit () {
		int n = sz(a);
		for(int i = 2; i <= n; i <<= 1) 
			for(int j = 0, l = (i >> 1); j < n; j += i) 
				for(int k = 0, *w = rt + l; k < l; k++, w++) {
					int pa = a[j + k], pb = (ll) a[j + k + l] * *w % mod;
					a[j + k] = add(pa, pb), a[j + k + l] = dec(pa, pb);
				}
		reverse(a.begin() + 1, a.end());
		for(int i = 0, iv = qpow(n); i < n; i++) a[i] = (ll) a[i] * iv % mod;
	} 
	friend poly operator * (poly aa, poly bb) {
		if(!sz(aa) || !sz(bb)) return {};
		int lim, all = sz(aa) + sz(bb) - 1;
		for(lim = 1; lim < all; lim <<= 1);
		aa.rs(lim), bb.rs(lim), aa.dif(), bb.dif();
		Fo(i, 0, lim - 1) aa[i] = (ll) aa[i] * bb[i] % mod;
		aa.dit(), aa.a.resize(all);
		return aa;
	}
	poly Inv() {
		poly res, f, g;
		res.rs(1), res[0] = qpow(a[0]);
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = m << 1, f = res, g.rs(pn), f.rs(pn);
			for(int i = 0; i < pn; i++) g[i] = (*this).v(i);
			f.dif(), g.dif();
			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
			g.dit();
			for(int i = 0; i < m; i++) g[i] = 0;
			g.dif();
			for(int i = 0; i < pn; i++) g[i] = (ll) f[i] * g[i] % mod;
			g.dit(), res.rs(pn);
			for(int i = m; i < min(pn, sz(a)); i++) res[i] = (mod - g[i]) % mod;
		} 
		return res.rs(sz(a)), res;
	}
	poly Shift (int x) {
		poly zm (sz(a) + x);
		Fo(i, max(-x, 0ll), sz(a) - 1) zm[i + x] = a[i];
		return zm; 
	}
	friend poly operator * (poly aa, int bb) {
		poly res(sz(aa));
		Fo(i, 0, sz(aa) - 1) res[i] = (ll) aa[i] * bb % mod;
		return res;
	}
	friend poly operator + (poly aa, poly bb) {
		vector<int> res(max(sz(aa), sz(bb)));
		Fo(i, 0, sz(res) - 1) res[i] = add(aa.v(i), bb.v(i));
		return poly(res);
	}
	friend poly operator - (poly aa, poly bb) {
		vector<int> res(max(sz(aa), sz(bb)));
		Fo(i, 0, sz(res) - 1) res[i] = dec(aa.v(i), bb.v(i));
		return poly(res);
	}
	poly & operator += (poly o) {
		rs(max(sz(a), sz(o)));
		Fo(i, 0, sz(a) - 1) (a[i] += o.v(i)) %= mod;
		return (*this);
	}
	poly & operator -= (poly o) {
		rs(max(sz(a), sz(o)));
		Fo(i, 0, sz(a) - 1) (a[i] += mod - o.v(i)) %= mod;
		return (*this);
	}
	poly & operator *= (poly o) {
		return (*this) = (*this) * o;
	}
	poly Integ() {
		if(!sz(a)) return poly();
		poly res(sz(a) + 1);
		Fo(i, 1, sz(a)) res[i] = (ll) a[i - 1] * inv[i] % mod;
		return res;
	}
	poly Deriv() {
		if(!sz(a)) return poly();
		poly res(sz(a) - 1); 
		Fo(i, 1, sz(a) - 1) res[i - 1] = (ll) a[i] * i % mod;
		return res;
	}
	poly Ln() {
		poly g = ((*this).Inv() * (*this).Deriv()).Integ();
		return g.rs(sz(a)), g;
	}
	poly Exp() {
		poly res(1), f; 
		res[0] = 1;
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = min(m << 1, sz(a)), f.rs(pn), res.rs(pn);
			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
			f -= res.Ln(), (f[0] += 1) %= mod, res *= f, res.rs(pn); 
		}
		return res.rs(sz(a)), res;
	}
	poly pow(int x, int rx = -1) { // x : the power % mod; rx : the power % (mod - 1)
		if(rx == -1) rx = x;
		int cnt = 0;
		while (a[cnt] == 0 && cnt < sz(a)) cnt += 1;
		
		poly res = (*this);
		Fo(i, cnt, sz(a) - 1) res[i - cnt] = res[i];
		Fo(i, sz(a) - cnt, sz(a) - 1) res[i] = 0;
		int c = res[0], w = qpow (res[0]);
		Fo(i, 0, sz(res) - 1) res[i] = (ll) res[i] * w % mod;
		res = res.Ln();
		Fo(i, 0, sz(res) - 1) res[i] = (ll) res[i] * x % mod;
		res = res.Exp();
		c = qpow (c, rx);
		Fo(i, 0, sz(res) - 1) res[i] = (ll) res[i] * c % mod;
		
		if((ll) cnt * x > sz(a)) Fo(i, 0, sz(a) - 1) res[i] = 0;
		else if(cnt) {
			Rep(i, sz(a) - cnt * x - 1, 0) res[i + cnt * x] = res[i];
			Fo(i, 0, cnt * x - 1) res[i] = 0; 
		}
		return res;
	}
	poly sqrt(int rt = 1) {
		poly res(1), f; 
		res[0] = rt;
		for(int m = 1, pn; m < sz(a); m <<= 1) {
			pn = min(m << 1, sz(a)), f.rs(pn);
			for(int i = 0; i < pn; i++) f[i] = (*this).v(i);
			f += res * res, f.rs(pn), res.rs(pn), res = f * res.Inv(), res.rs(pn);
			for(int i = 0; i < pn; i++) res[i] = (ll) res[i] * inv2 % mod;
		} 
		return res;
	}
	void Rev() {
		reverse(a.begin(), a.end());
	}
	friend pair < poly, poly > div (poly f, poly g) { /* f / g = first, f % g = second */
		f.rs(max(sz(f), sz(g))), f.Rev(), g.Rev();
		int n = sz(f), m = sz(g);
		poly A = g.Rs(n - m + 1).Inv(), t;
		A *= f.Rs(n - m + 1), A.rs(n - m + 1), A.Rev(), g.Rev(), f.Rev(), t = f - A * g, t.rs(m - 1);
		return make_pair(A, t);
	} 
};

动态规划

01背包模型

const int N = 100010;
int dp[N], w[N], v[N];
int main(){
    int n,m;
    for(int i=1;i<=n;i++){
        for(int j=m;j>=w[i];j--){
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
}

完全背包模型

const int N = 100010;
int dp[N], w[N], v[N];
int main(){
    int n,m;
    for(int i=1;i<=n;i++){
        for(int j=w[i];j<=m;j++){
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
}

多重背包模型

int f[1010];
int a[10005],b[10005],c[10005]; //体积、价值、次数
int cnt,co[1000005],v[1000005];//尽可能开大,不要把空间开爆了 二进制优化后体积,价值
int main(){
    int n,m;
    //输入 a,b,c;

    //
    auto pre = [&](){
        for(int i=1;i<=n;i++) {
            int t=1;
            while(c[i]) {
                co[++cnt]=t*a[i];
                v[cnt]=t*b[i];
                c[i]-=t; t*=2;
                if(c[i]<t) {//如果剩下的不能再拆,就直接放在一起
                    co[++cnt]=a[i]*c[i];
                    v[cnt]=b[i]*c[i];
                    break;
                }
            }
        }        
    };
    pre();
    //01背包板子
    for(int i=1;i<=cnt;i++){
        for(int j=m;j>=co[i];j--){
            f[j]=max(f[j],f[j-co[i]]+v[i]);
        }
    }
    //
}

最长公共子序列

#include<bits/stdc++.h>
using namespace std;
//最长公共子序列
const int N=101000;
int a[N],ind[N],n;
int main(){
    cin>>n;
    int tmp;
    memset(a,0x3f,sizeof(a));
    for (int i=1;i<=n;i++){
        cin>>tmp;
        ind[tmp]=i;
    }
    for (int i=1;i<=n;i++){
        cin>>tmp;
        int x=ind[tmp];
        *lower_bound(a+1,a+n+1,x)=x;
    }
    cout<<(lower_bound(a+1,a+n+1,a[0])-a-1);
    return 0;
}

最长上升子序列(严格单调递增)

#include<bits/stdc++.h>
using namespace std;
//最长上升子序列(严格单调递增)
int main(){
    ios::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);
    int n;
    cin>>n;
    vector<int> a(n);
    vector<int> st;
    for(int i=0;i<n;i++){
        cin>>a[i];
    }
    st.push_back(a[0]);
    for(int i=1;i<n;i++){
        if(a[i]>st.back()){
            st.push_back(a[i]);
        }else{
            *lower_bound(st.begin(),st.end(),a[i]) = a[i];
        }
    }
    cout<<st.size();
    return 0;
}

拆位异或和

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1000010;
int dp[N];
int cnt[2];
signed main(){
	int n;
	cin>>n;
	vector<int> a(n+1,0);
	for(int i=1;i<=n;i++){
		cin>>a[i];
	}
	int sum=0;
	for(int i=0;i<=20;i++){
		for(int j=1;j<=n;j++){
			if((a[j]>>i)&1) dp[j]=dp[j-1]^1;
			else dp[j]=dp[j-1];
		}
		cnt[0]=cnt[1]=0;
		for(int i=0;i<=n;i++){
			cnt[dp[i]]++;
		}
		sum+=(1ll<<i)*cnt[0]*cnt[1];
	}
	cout<<sum<<"\n";
	return 0;
}

数位dp

int work(int x,int t){
    string str=to_string(x);
    int m=str.size();
    int mem[200][200];
    memset(mem,-1,sizeof(mem));
    function<int(int,int,bool,bool)> dfs = [&](int i,int sum,bool limit,bool isnum)->int{
        if(i==m) return isnum?sum:0;
        if(!limit&&isnum&&mem[i][sum]!=-1) return mem[i][sum];
        int res=0;
        if(!isnum) res=dfs(i+1,sum,false,false);
        int up=limit?str[i]-'0':9;
        for(int d=1-isnum;d<=up;d++){
            res+=dfs(i+1,sum+(d==t),limit&&d==up,true);
        }
        if(!limit&&isnum){
            mem[i][sum]=res;
        }
        return res;
    };
    return dfs(0,0,true,false);
}

图论树论

树论大板子

struct Tree {
    int n;
    vector<vector<pair<int, int>>> e;
    vector<int> dep, parent, maxdep, d1, d2, s1, s2, up;
    Tree(int n) {
        this->n = n;
        e.resize(n + 1);
        dep.resize(n + 1);
        parent.resize(n + 1);
        maxdep.resize(n + 1);
        d1.resize(n + 1);
        d2.resize(n + 1);
        s1.resize(n + 1);
        s2.resize(n + 1);
        up.resize(n + 1);
    }
    void add(int u, int v, int w) {
        e[u].push_back({w, v});
        e[v].push_back({w, u});
    }
    void dfs(int u, int fa) {
        maxdep[u] = dep[u];
        for (auto [w, v] : e[u]) {
            if (v == fa) continue;
            dep[v] = dep[u] + 1;
            parent[v] = u;
            dfs(v, u);
            maxdep[u] = max(maxdep[u], maxdep[v]);
        }
    }

    void dfs1(int u, int fa) {
        for (auto [w, v] : e[u]) {
            if (v == fa) continue;
            dfs1(v, u);
            int x = d1[v] + w;
            if (x > d1[u]) {
                d2[u] = d1[u], s2[u] = s1[u];
                d1[u] = x, s1[u] = v;
            } else if (x > d2[u]) {
                d2[u] = x, s2[u] = v;
            }
        }
    }
    void dfs2(int u, int fa) {
        for (auto [w, v] : e[u]) {
            if (v == fa) continue;
            if (s1[u] == v) {
                up[v] = max(up[u], d2[u]) + w;
            } else {
                up[v] = max(up[u], d1[u]) + w;
            }
            dfs2(v, u);
        }
    }

    int radius, center, diam;
    void getCenter() {
        center = 1; //中心
        for (int i = 1; i <= n; i++) {
            if (max(d1[i], up[i]) < max(d1[center], up[center])) {
                center = i;
            }
        }
        radius = max(d1[center], up[center]); //距离最远点的距离的最小值
        diam = d1[center] + up[center] + 1; //直径
    }

    int rem; //删除重心后剩余连通块体积的最小值
    int cog; //重心
    vector<bool> vis;
    void getCog() {
        vis.resize(n);
        rem = INT_MAX;
        cog = 1;
        dfsCog(1);
    }
    int dfsCog(int u) {
        vis[u] = true;
        int s = 1, res = 0;
        for (auto [w, v] : e[u]) {
            if (vis[v]) continue;
            int t = dfsCog(v);
            res = max(res, t);
            s += t;
        }
        res = max(res, n - s);
        if (res < rem) {
            rem = res;
            cog = u;
        }
        return s;
    }
};

树论板子2

#include<bits/stdc++.h>
using namespace std;
struct Tree {
    int n;
    vector<vector<int>> ver, val;
    vector<int> lg, dep, wid;//深度,宽度
    Tree(int n) {
        this->n = n;
        ver.resize(n + 1);
        val.resize(n + 1, vector<int>(30));
        lg.resize(n + 1);
        dep.resize(n + 1);
        for (int i = 1; i <= n; i++) { //预处理 log
            lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
        }
    }
    void add(int x, int y) {
        ver[x].push_back(y);
    }
    void dfs(int x, int fa) {
        val[x][0] = fa; // 储存 x 的父节点
        dep[x] = dep[fa] + 1;
        for (int i = 1; i <= lg[dep[x]]; i++) {
            val[x][i] = val[val[x][i - 1]][i - 1];
        }
        for (auto y : ver[x]) {
            if (y == fa) continue;
            dfs(y, x);
        }
    }
    int lca(int x, int y) {
        if (dep[x] < dep[y]) swap(x, y);
        while (dep[x] > dep[y]) {
            x = val[x][lg[dep[x] - dep[y]] - 1];
        }
        if (x == y) return x;
        for (int k = lg[dep[x]] - 1; k >= 0; k--) {
            if (val[x][k] == val[y][k]) continue;
            x = val[x][k];
            y = val[y][k];
        }
        return val[x][0];
    }
    int calc(int x, int y) { // 倍增查询两点间距离
        return dep[x] + dep[y] - 2 * dep[lca(x, y)];
    }
    void work(int root = 1) { // 在此初始化
        dfs(root, 0);
        bfs(root);
    }
    void bfs(int rt){
        queue<int> q,tmp;
        q.push(rt);
        int ind=0;
        while(ind<n){
            while(q.size()){
                int x=q.front();
                ind++;
                q.pop();
                for(auto &v: ver[x]){
                    tmp.push(v);
                }
            } 
            int cnt=0;
            while(tmp.size()){
                q.push(tmp.front());
                tmp.pop();
                cnt++;
            }
            wid.push_back(cnt);
        }
    }
};

带权图LCA

#include<bits/stdc++.h>
using namespace std;
struct Tree {
    int n;
    vector<vector<int>> val, Max;
    vector<vector<pair<int, int>>> ver;
    vector<int> lg, dep;
    Tree(int n) {
        this->n = n;
        ver.resize(n + 1);
        val.resize(n + 1, vector<int>(30));
        Max.resize(n + 1, vector<int>(30));
        lg.resize(n + 1);
        dep.resize(n + 1);
        for (int i = 1; i <= n; i++) { //预处理 log
            lg[i] = lg[i - 1] + (1 << lg[i - 1] == i);
        }
    }
    void add(int x, int y, int w) { // 建立双向边
        ver[x].push_back({y, w});
        ver[y].push_back({x, w});
    }
    void dfs(int x, int fa) {
        val[x][0] = fa;
        dep[x] = dep[fa] + 1;
        for (int i = 1; i <= lg[dep[x]]; i++) {
            val[x][i] = val[val[x][i - 1]][i - 1];
            Max[x][i] = max(Max[x][i - 1], Max[val[x][i - 1]][i - 1]);
        }
        for (auto [y, w] : ver[x]) {
            if (y == fa) continue;
            Max[y][0] = w;
            dfs(y, x);
        }
    }
    int lca(int x, int y) {
        if (dep[x] < dep[y]) swap(x, y);
        while (dep[x] > dep[y]) {
            x = val[x][lg[dep[x] - dep[y]] - 1];
        }
        if (x == y) return x;
        for (int k = lg[dep[x]] - 1; k >= 0; k--) {
            if (val[x][k] == val[y][k]) continue;
            x = val[x][k];
            y = val[y][k];
        }
        return val[x][0];
    }
    int clac(int x, int y) { // 倍增查询两点间距离
        return dep[x] + dep[y] - 2 * dep[lca(x, y)];
    }
    int query(int x, int y) { // 倍增查询两点路径上的最大边权(带权图)
        auto get = [&](int x, int y) -> int {
            int ans = 0;
            if (x == y) return ans;
            for (int i = lg[dep[x]]; i >= 0; i--) {
                if (dep[val[x][i]] > dep[y]) {
                    ans = max(ans, Max[x][i]);
                    x = val[x][i];
                }
            }
            ans = max(ans, Max[x][0]);
            return ans;
        };
        int fa = lca(x, y);
        return max(get(x, fa), get(y, fa));
    }
    void work(int root = 1) { // 在此初始化
        dfs(root, 0);
    }
};

染色法判二分图

struct BipGraph{
    vector<vector<int>> adj;
    vector<int> color;
    int n;
    BipGraph(int n):n(n){
        adj.resize(n+1);
        color.resize(n+1);
    }
    void add(int a,int b){
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    bool dfs(int u,int c){
        color[u] = c;
        for(auto v:adj[u]){
            int b = v;                   
            if(!color[b]){
                if(!dfs(b, 3 - c)) return false;
            }
            else if(color[b] && color[b] != 3 - c){                                     
                return false;                   
            }
        }
        return true;
    }
    bool check(){
        for(int i=1;i<=n;i++){
            if(!color[i]){
                if(!dfs(i,1)){
                    return false;
                }
            }
        }
        return true;
    }
};

二分图最大匹配

#include<bits/stdc++.h>
using namespace std;
//二分图最大匹配
struct HopcroftKarp {
    vector<vector<int>> g;
    vector<int> pa, pb, vis;
    int n, m, dfn, res;

    HopcroftKarp(int _n, int _m) : n(_n + 1), m(_m + 1) {
        assert(0 <= n && 0 <= m);
        pa.assign(n, -1);
        pb.assign(m, -1);
        vis.resize(n);
        g.resize(n);
        res = 0;
        dfn = 0;
    }
    void add(int x, int y) {
        assert(0 <= x && x < n && 0 <= y && y < m);
        g[x].push_back(y);
    }
    bool dfs(int v) {
        vis[v] = dfn;
        for (int u : g[v]) {
            if (pb[u] == -1) {
                pb[u] = v;
                pa[v] = u;
                return true;
            }
        }
        for (int u : g[v]) {
            if (vis[pb[u]] != dfn && dfs(pb[u])) {
                pa[v] = u;
                pb[u] = v;
                return true;
            }
        }
        return false;
    }
    int work() {
        while (1) {
            dfn++;
            int cnt = 0;
            for (int i = 0; i < n; i++) {
                if (pa[i] == -1 && dfs(i)) {
                    cnt++;
                }
            }
            if (cnt == 0) break;
            res += cnt;
        }
        return res;
    }
};
signed main() {
    int n1, n2, m;
    cin >> n1 >> n2 >> m;
    HopcroftKarp flow(n1, n2);
    while (m--) {
        int x, y;
        cin >> x >> y;
        flow.add(x, y);
    }
    cout << flow.work() << endl;
}

二分图最大权匹配

#include<bits/stdc++.h>
using namespace std;
//二分图最大权匹配
struct MaxCostMatch {
    vector<int> ansl, ansr, pre;
    vector<int> lx, ly;
    vector<vector<int>> ver;
    int n;

    MaxCostMatch(int n) : n(n) {
        ver.resize(n + 1, vector<int>(n + 1));
        ansl.resize(n + 1, -1);
        ansr.resize(n + 1, -1);
        lx.resize(n + 1);
        ly.resize(n + 1, -1E18);
        pre.resize(n + 1);
    }
    void add(int x, int y, int w) {
        ver[x][y] = w;
    }
    void bfs(int x) {
        vector<bool> visl(n + 1), visr(n + 1);
        vector<int> slack(n + 1, 1E18);
        queue<int> q;
        function<bool(int)> check = [&](int x) {
            visr[x] = 1;
            if (~ansr[x]) {
                q.push(ansr[x]);
                visl[ansr[x]] = 1;
                return false;
            }
            while (~x) {
                ansr[x] = pre[x];
                swap(x, ansl[pre[x]]);
            }
            return true;
        };
        q.push(x);
        visl[x] = 1;
        while (1) {
            while (!q.empty()) {
                int x = q.front();
                q.pop();
                for (int y = 1; y <= n; ++y) {
                    if (visr[y]) continue;
                    int del = lx[x] + ly[y] - ver[x][y];
                    if (del < slack[y]) {
                        pre[y] = x;
                        slack[y] = del;
                        if (!slack[y] && check(y)) return;
                    }
                }
            }
            int val = 1E18;
            for (int i = 1; i <= n; ++i) {
                if (!visr[i]) {
                    val = min(val, slack[i]);
                }
            }
            for (int i = 1; i <= n; ++i) {
                if (visl[i]) lx[i] -= val;
                if (visr[i]) {
                    ly[i] += val;
                } else {
                    slack[i] -= val;
                }
            }
            for (int i = 1; i <= n; ++i) {
                if (!visr[i] && !slack[i] && check(i)) {
                    return;
                }
            }
        }
    }
    int work() {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                ly[i] = max(ly[i], ver[j][i]);
            }
        }
        for (int i = 1; i <= n; ++i) bfs(i);
        int res = 0;
        for (int i = 1; i <= n; ++i) {
            res += ver[i][ansl[i]];
        }
        return res;
    }
    void getMatch(int x, int y) { // 获取方案 (0代表无匹配)
        for (int i = 1; i <= x; ++i) {
            cout << (ver[i][ansl[i]] ? ansl[i] : 0) << " ";
        }
        cout << endl;
        for (int i = 1; i <= y; ++i) {
            cout << (ver[i][ansr[i]] ? ansr[i] : 0) << " ";
        }
        cout << endl;
    }
};

signed main() {
    int n1, n2, m;
    cin >> n1 >> n2 >> m;

    MaxCostMatch match(max(n1, n2));
    for (int i = 1; i <= m; i++) {
        int x, y, w;
        cin >> x >> y >> w;
        match.add(x, y, w);
    }
    cout << match.work() << '\n';
    match.getMatch(n1, n2);
}

Prim

#define INF 0x3f3f3f3f

//稠密图
const int N = 550;
int g[N][N],d[N],v[N];
struct Prim{
    int n;
    Prim(int n):n(n){
        memset(g,INF,sizeof(g));
        memset(d,INF,sizeof(d));
    }
    void add(int x,int y,int w){
        g[x][y]=g[y][x]=min(g[x][y],w);
    }
    int work() {
        int ans = 0;
        for (int i = 0; i < n; ++ i) {
            int t = -1;
            for (int j = 1; j <= n; ++ j)
                if (v[j] == 0 && (t == -1 || d[j] < d[t]))
                    t = j;
            v[t] = 1; 
            if (i && d[t] == INF) return INF;
            if (i) ans += d[t];
            for (int j = 1; j <= n; ++ j) d[j] = min(d[j], g[t][j]); 
        }
        return ans;
    }
};

Kruskal

struct DSU{
    vector<int> p,size;
    DSU(){}
    DSU(int n){
        init(n);
    }
    void init(int n){
        p.resize(n+1);
        iota(p.begin(),p.end(),0);
        size.assign(n+1,1);
    }
    bool same(int a,int b){
        return find(a)==find(b);
    }
    int find(int x){
        if(p[x]!=x) p[x]=find(p[x]);
        return p[x];
    }
    bool merge(int a,int b){
        a=find(a);
        b=find(b);
        if(same(a,b)){
            return false;
        }
        size[b]+=size[a];
        p[a]=b;
        return true;
    }
    int getSize(int x){
        return size[find(x)];
    }
};
struct Kruskal{
    struct Edge{
        int u,v,w;
    };
    int n,k;
    vector<Edge> g;
    Kruskal(int n,int k=1){
        this->n=n;
        this->k=k;
    }
    void add(int u,int v,int w){
        g.push_back({u,v,w});
    }
    int work(){
        DSU d(n);
        int ans=0,cnt=0;
        sort(g.begin(),g.end(),[&](Edge a,Edge b){
            return a.w<b.w;
        });
        for(int i=0;i<g.size();i++){
            int eu=d.find(g[i].u);
            int ev=d.find(g[i].v);
            if(eu==ev){
                continue;
            }
            ans+=g[i].w;
            d.merge(ev,eu);
            if(++cnt==n-k){
                break;
            }
        }
        if(cnt!=n-k){
            return 0x80808080;
        }
        return ans;
    }
};

Dijkstra

template<typename T>
struct Dijkstra{
    struct Node{
        int v;
        T w;
    };
    vector<vector<Node>> adj;
    vector<T> dis;
    vector<bool> vis;
    Dijkstra(ll n){
        adj.resize(n+1);
        dis.resize(n+1,INF);
        vis.resize(n+1);
    }
    void work(int st){
        dis[st]=0;
        priority_queue<pair<T,int>> pq;
        pq.push({0,st});
        while(pq.size()){
            auto a = pq.top();
            pq.pop();
            int u=a.second;
            if(vis[u]){
                continue;
            }
            vis[u]=true;
            for(auto &t:adj[u]){
                int v=t.v;
                T w=t.w;
                if(dis[v]>dis[u]+w){
                    dis[v]=dis[u]+w;
                    pq.push({-dis[v],v});
                }
            }
        }
    }
    void add(int u,int v,T w){
        if(u!=v){
            adj[u].push_back({v,w});
        }
    }
    T query(int ed){
        return dis[ed];
    }
};

SPFA

struct SPFA{
    #define INFI 0x3f3f3f3f
    #define NINFI 0x80808080
    struct Node{
        int v,w;
    };
    int n;
    vector<vector<Node>> G;
    vector<int> dis;
    vector<int> cnt;
    vector<bool> in;
    SPFA(int n){
        this->n=n;
        G.resize(n+1);
    }
    //存在负环为true
    bool work_sp(int st){
        dis.resize(n+1,INFI);
        in.resize(n+1,false);
        cnt.resize(n+1,0);
        queue <int> q;
        q.push(st);
        dis[st] = 0;
        in[st] = true;
        cnt[st] = 1;
        while (!q.empty()){
            int u = q.front();
            q.pop();
            in[u] = false;
            for (auto &t:G[u]){
                int v = t.v;
                int w = t.w;
                if (dis[v] > dis[u] + w){
                    dis[v] = dis[u] + w;
                    if (!in[v]){
                        cnt[v]++;
                        q.push(v);
                        in[v] = true;
                        if (cnt[v] >= n){
                            return true;
                        } 
                    }
                }
            }
        }
        return false;
    }
    bool work_lp(int st){
        dis.resize(n+1,NINFI);
        in.resize(n+1,false);
        cnt.resize(n+1,0);
        queue <int> q;
        q.push(st);
        dis[st] = 0;
        in[st] = true;
        cnt[st] = 1;
        while (!q.empty()){
            int u = q.front();
            q.pop();
            in[u] = false;
            for (auto &t:G[u]){
                int v = t.v;
                int w = t.w;
                if (dis[v] < dis[u] + w){
                    dis[v] = dis[u] + w;
                    if (!in[v]){
                        cnt[v]++;
                        q.push(v);
                        in[v] = true;
                        if (cnt[v] >= n){
                            return true;    
                        } 
                    }
                }
            }
        }
        return false;        
    }
    void add_one(int u,int v,int w){
        G[u].push_back({v,w});
    }
    void add_two(int u,int v,int w){
        G[u].push_back({v,w});
        if(w>=0){
            G[v].push_back({u,w});
        }
    }
    int query(int n){
        return dis[n];
    }
};

Floyd

template<typename T>
struct Floyd{
    #define MAXN 201
    vector<T> d[MAXN];
    int n;
    Floyd(int n):n(n){
        for(int i=0;i<=n;i++){
            d[i].resize(n+1,INF);
            for(int j=0;j<=n;j++){
                if(i==j){
                    d[i][j]=0;
                }
            }
        }
    }
    void work(){
        for (int k = 1; k <= n; k ++ )
            for (int i = 1; i <= n; i ++ )
                for (int j = 1; j <= n; j ++ )
                    d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
                    // d[i][j] = max(d[i][j], min(d[i][k] , d[k][j])); 传递闭包
    }
    T query(int st,int ed){
        if(d[st][ed]>INF/2){
            return 0x80808080;
        }
        return d[st][ed];
    }
    void add(int u,int v,T w){
        d[u][v]=min(d[u][v],w);
    }
    int cog;
    T getCog(vector<int> surr){
        MinSum(surr);
        return cog;
    }
    T MinSum(vector<int> surr){
        T Minval=INF;
        for(int i=1;i<=n;i++){
            T sum=0;
            for(auto &v:surr){
                sum+=query(i,v);
            }
            if(sum<Minval){
                cog=i;
                Minval=min(Minval,sum);
            }
        }
        return Minval;
    }
};

最大流

constexpr int inf = 1E9;
template<class T>
struct MaxFlow {
    struct _Edge {
        int to;
        T cap;
        _Edge(int to, T cap) : to(to), cap(cap) {}
    };
     
    int n;
    std::vector<_Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<int> cur, h;
     
    MaxFlow() {}
    MaxFlow(int n) {
        init(n+2);
    }
     
    void init(int n) {
        this->n = n;
        e.clear();
        g.assign(n, {});
        cur.resize(n);
        h.resize(n);
    }
     
    bool bfs(int s, int t) {
        h.assign(n, -1);
        std::queue<int> que;
        h[s] = 0;
        que.push(s);
        while (!que.empty()) {
            const int u = que.front();
            que.pop();
            for (int i : g[u]) {
                auto [v, c] = e[i];
                if (c > 0 && h[v] == -1) {
                    h[v] = h[u] + 1;
                    if (v == t) {
                        return true;
                    }
                    que.push(v);
                }
            }
        }
        return false;
    }
     
    T dfs(int u, int t, T f) {
        if (u == t) {
            return f;
        }
        auto r = f;
        for (int &i = cur[u]; i < int(g[u].size()); ++i) {
            const int j = g[u][i];
            auto [v, c] = e[j];
            if (c > 0 && h[v] == h[u] + 1) {
                auto a = dfs(v, t, std::min(r, c));
                e[j].cap -= a;
                e[j ^ 1].cap += a;
                r -= a;
                if (r == 0) {
                    return f;
                }
            }
        }
        return f - r;
    }
    void addEdge(int u, int v, T c) {
        g[u].push_back(e.size());
        e.emplace_back(v, c);
        g[v].push_back(e.size());
        e.emplace_back(u, 0);
    }
    T flow(int s, int t) {
        T ans = 0;
        while (bfs(s, t)) {
            cur.assign(n, 0);
            ans += dfs(s, t, std::numeric_limits<T>::max());
        }
        return ans;
    }
     
    std::vector<bool> minCut() {
        std::vector<bool> c(n);
        for (int i = 0; i < n; i++) {
            c[i] = (h[i] != -1);
        }
        return c;
    }
     
    struct Edge {
        int from;
        int to;
        T cap;
        T flow;
    };
    std::vector<Edge> edges() {
        std::vector<Edge> a;
        for (int i = 0; i < e.size(); i += 2) {
            Edge x;
            x.from = e[i + 1].to;
            x.to = e[i].to;
            x.cap = e[i].cap + e[i + 1].cap;
            x.flow = e[i + 1].cap;
            a.push_back(x);
        }
        return a;
    }
};

网络流+可行流

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
struct MCFGraph {
    struct Edge {
        int v, c, f;
        Edge(int v, int c, int f) : v(v), c(c), f(f) {}
    };
    const int n;
    std::vector<Edge> e;
    std::vector<std::vector<int>> g;
    std::vector<ll> h, dis;
    std::vector<int> pre;
    bool dijkstra(int s, int t) {
        dis.assign(n, std::numeric_limits<ll>::max());
        pre.assign(n, -1);
        std::priority_queue<std::pair<ll, int>, std::vector<std::pair<ll, int>>, std::greater<std::pair<ll, int>>> que;
        dis[s] = 0;
        que.emplace(0, s);
        while (!que.empty()) {
            ll d = que.top().first;
            int u = que.top().second;
            que.pop();
            if (dis[u] < d) continue;
            for (int i : g[u]) {
                int v = e[i].v;
                int c = e[i].c;
                int f = e[i].f;
                if (c > 0 && dis[v] > d + h[u] - h[v] + f) {
                    dis[v] = d + h[u] - h[v] + f;
                    pre[v] = i;
                    que.emplace(dis[v], v);
                }
            }
        }
        return dis[t] != std::numeric_limits<ll>::max();
    }
    MCFGraph(int n) : n(n+1), g(n+1) {}

    //可行流
    // void addEdge(int u, int v, int c, int f) {
    //     if (f < 0) {
    //         g[u].push_back(e.size());
    //         e.emplace_back(v, 0, f);
    //         g[v].push_back(e.size());
    //         e.emplace_back(u, c, -f);
    //     } else {
    //         g[u].push_back(e.size());
    //         e.emplace_back(v, c, f);
    //         g[v].push_back(e.size());
    //         e.emplace_back(u, 0, -f);
    //     }
    // }

    //最大流
    void addEdge(int u, int v, int c, int f) { // 最大流
        g[u].push_back(e.size());
        e.emplace_back(v, c, f);
        g[v].push_back(e.size());
        e.emplace_back(u, 0, -f);
    }

    std::pair<int, ll> flow(int s, int t) {
        int flow = 0;
        ll cost = 0;
        h.assign(n, 0);
        while (dijkstra(s, t)) {
            for (int i = 0; i < n; ++i) h[i] += dis[i];
            int aug = std::numeric_limits<int>::max();
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) aug = std::min(aug, e[pre[i]].c);
            for (int i = t; i != s; i = e[pre[i] ^ 1].v) {
                e[pre[i]].c -= aug;
                e[pre[i] ^ 1].c += aug;
            }
            flow += aug;
            cost += ll(aug) * h[t];
        }
        return std::make_pair(flow, cost);
    }
};

预流推进最大流

template <typename T> struct PushRelabel {
    const int inf = 0x3f3f3f3f;
    const T INF = 0x3f3f3f3f3f3f3f3f;
    struct Edge {
        int to, cap, flow, anti;
        Edge(int v = 0, int w = 0, int id = 0) : to(v), cap(w), flow(0), anti(id) {}
    };
    vector<vector<Edge>> e; 
    vector<vector<int>> gap;
    vector<T> ex; // 超额流
    vector<bool> ingap;
    vector<int> h;
    int n, gobalcnt, maxH = 0;
    T maxflow = 0;

    PushRelabel(int n) : n(n), e(n + 1), ex(n + 1), gap(n + 1) {}
    void addedge(int u, int v, int w) {
        e[u].push_back({v, w, (int)e[v].size()});
        e[v].push_back({u, 0, (int)e[u].size() - 1});
    }
    void PushEdge(int u, Edge &edge) {
        int v = edge.to, d = min(ex[u], 1LL * edge.cap - edge.flow);
        ex[u] -= d;
        ex[v] += d;
        edge.flow += d;
        e[v][edge.anti].flow -= d;
        if (h[v] != inf && d > 0 && ex[v] == d && !ingap[v]) {
            ++gobalcnt;
            gap[h[v]].push_back(v);
            ingap[v] = 1;
        }
    }
    void PushPoint(int u) {
        for (auto k = e[u].begin(); k != e[u].end(); k++) {
            if (h[k->to] + 1 == h[u] && k->cap > k->flow) {
                PushEdge(u, *k);
                if (!ex[u]) break;
            }
        }
        if (!ex[u]) return;
        if (gap[h[u]].empty()) {
            for (int i = h[u] + 1; i <= min(maxH, n); i++) {
                for (auto v : gap[i]) {
                    ingap[v] = 0;
                }
                gap[i].clear();
            }
        }
        h[u] = inf;
        for (auto [to, cap, flow, anti] : e[u]) {
            if (cap > flow) {
                h[u] = min(h[u], h[to] + 1);
            }
        }
        if (h[u] >= n) return;
        maxH = max(maxH, h[u]);
        if (!ingap[u]) {
            gap[h[u]].push_back(u);
            ingap[u] = 1;
        }
    }
    void init(int t, bool f = 1) {
        ingap.assign(n + 1, 0);
        for (int i = 1; i <= maxH; i++) {
            gap[i].clear();
        }
        gobalcnt = 0, maxH = 0;
        queue<int> q;
        h.assign(n + 1, inf);
        h[t] = 0, q.push(t);
        while (q.size()) {
            int u = q.front();
            q.pop(), maxH = h[u];
            for (auto &[v, cap, flow, anti] : e[u]) {
                if (h[v] == inf && e[v][anti].cap > e[v][anti].flow) {
                    h[v] = h[u] + 1;
                    q.push(v);
                    if (f) {
                        gap[h[v]].push_back(v);
                        ingap[v] = 1;
                    }
                }
            }
        }
    }
    T work(int s, int t) {
        init(t, 0);
        if (h[s] == inf) return maxflow;
        h[s] = n;
        ex[s] = INF;
        ex[t] = -INF;
        for (auto k = e[s].begin(); k != e[s].end(); k++) {
            PushEdge(s, *k);
        }
        while (maxH > 0) {
            if (gap[maxH].empty()) {
                maxH--;
                continue;
            }
            int u = gap[maxH].back();
            gap[maxH].pop_back();
            ingap[u] = 0;
            PushPoint(u);
            if (gobalcnt >= 10 * n) {
                init(t);
            }
        }
        ex[s] -= INF;
        ex[t] += INF;
        return maxflow = ex[t];
    }
};

数据结构

单调队列

//查询区间k的最大最小值。
#include<bits/stdc++.h>
using namespace std;
const int MAX = 100010;
deque<int> D;
int n,k,x,a[MAX];
int main(){
    cin>>n>>k;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int i=1;i<=n;i++){
        while(!D.empty() && a[D.back()]<=a[i]) D.pop_back();
        D.emplace_back(i);
        if(!D.empty()) if(i-D.front()>=k) D.pop_front();
        if(i>=k)cout<<a[D.front()]<<endl;
    }
    return 0;
}

DSU

struct DSU{
    vector<int> p,size;
    DSU(){}
    DSU(int n){
        init(n);
    }
    void init(int n){
        p.resize(n+1);
        iota(p.begin(),p.end(),0);
        size.assign(n+1,1);
    }
    bool same(int a,int b){
        return find(a)==find(b);
    }
    int find(int x){
        if(p[x]!=x) p[x]=find(p[x]);
        return p[x];
    }
    bool merge(int a,int b){
        a=find(a);
        b=find(b);
        if(same(a,b)){
            return false;
        }
        size[b]+=size[a];
        p[a]=b;
        return true;
    }
    int getSize(int x){
        return size[find(x)];
    }
};

ST表

#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int n;
int a[N],dp_max[N][22],dp_min[N][21];
void init(){    //先输入a再init a从下标1输入
    for(int i=1;i<=n;i++){
        dp_min[i][0]=a[i];
        dp_max[i][0]=a[i];
    }
    int p=log2(n);
    for(int k=1;k<=p;k++){
        for(int s=1;s+(1<<k)<=n+1;s++){
            dp_max[s][k]=max(dp_max[s][k-1],dp_max[s+(1<<(k-1))][k-1]);
            dp_min[s][k]=min(dp_min[s][k-1],dp_min[s+(1<<(k-1))][k-1]);
        }
    }
}
int query(int L,int R){
    int k = log2(R-L+1);
    int x=max(dp_max[L][k],dp_max[R-(1<<k)+1][k]);//取区间最大
    int y=min(dp_min[L][k],dp_min[R-(1<<k)+1][k]);//取区间最小
    return x;
}

线段树

const int N = 1e6+10;
#define ls(x) x<<1
#define rs(x) x<<1|1
struct Node{
    int l,r;
    
}tr[N<<2];
int a[N];
void pushup(int u){
    
}
void build(int u,int l,int r){
    if(l==r){
        
        return;
    }
    tr[u]={l,r};
    int mid=l+r>>1;
    build(ls(u),l,mid);build(rs(u),mid+1,r);
    pushup(u);
}
void modify(int u,int x,int v){
    if(tr[u].l==x&&tr[u].r==x){
        
        return;
    }
    int mid=tr[u].l+tr[u].r>>1;
    if(x<=mid){
        modify(ls(u),x,v);
    }else{
        modify(rs(u),x,v);
    }
    pushup(u);
}
int query(int u,int l,int r){
    if(tr[u].l>=l&&tr[u].r<=r){
        
    }
    int res=0;
    int mid=tr[u].l+tr[u].r>>1;
    if(l<=mid){
        res=query(ls(u),l,r);
    }
    if(r>mid){
        
    }
    return res;
}

懒标记线段树

const int N = 1e6+10;
#define ls(x) x<<1
#define rs(x) x<<1|1
struct Node{
    int l,r;
    
}tr[N<<2];
int a[N];
void pushup(int u){
    
}
void build(int u,int l,int r){
    if(l==r){
        
        return;
    }
    tr[u]={l,r};
    int mid=l+r>>1;
    build(ls(u),l,mid);build(rs(u),mid+1,r);
    pushup(u);
}
void apply(int u,int v){
    
}
void pushdown(int u){
    
}
void modify(int u,int l,int r,int v){
    if(tr[u].l>=l&&tr[u].r<=r){
        apply(u,v);
        return;
    }
    pushdown(u);
    int mid=tr[u].l+tr[u].r>>1;
    if(l<=mid){
        modify(ls(u),l,r,v);
    }
    if(r>mid){
        modify(rs(u),l,r,v);
    }
    pushup(u);
}
int query(int u,int l,int r){
    if(tr[u].l>=l&&tr[u].r<=r){
        
    }
    pushdown(u);
    int mid=tr[u].l+tr[u].r>>1;
    int res=0;
    if(l<=mid){
        res=query(ls(u),l,r);
    }
    if(r>mid){
        
    }
    return res;
}

珂朵莉树

struct ODT {
    struct node {
        int l, r;
        mutable ll v;
        node(int l, int r = -1, ll v = 0) : l(l), r(r), v(v) {}
        bool operator<(const node &o) const {
            return l < o.l;
        }
    };
    set<node> s;
    int sum=0;//区间一次和(特殊)
    ODT() {
        s.clear();
    }
    auto split(int pos) {
        auto it = s.lower_bound(node(pos));
        if (it != s.end() && it->l == pos) return it;
        it--;
        int l = it->l, r = it->r;
        ll v = it->v;
        s.erase(it);
        s.insert(node(l, pos - 1, v));
        return s.insert(node(pos, r, v)).first;
    }
    //区间赋值
    void assign(int l, int r, ll x) {
        auto itr = split(r + 1), itl = split(l) , it=itl;
        for(;itl!=itr;++itl){
            sum-=itl->v*(itl->r-itl->l+1);
        }
        s.erase(it, itr);
        s.insert(node(l, r, x));
        sum+=x*(r-l+1);
    }
    //区间加
    void add(int l, int r, ll x) {
        auto itr = split(r + 1), itl = split(l);
        for (auto it = itl; it != itr; it++) {
            it->v += x;
        }
    }
    //区间第k小
    ll kth(int l, int r, int k) {
        vector<pair<ll, int>> a;
        auto itr = split(r + 1), itl = split(l);
        for (auto it = itl; it != itr; it++) {
            a.push_back(pair<ll, int>(it->v, it->r - it->l + 1));
        }
        sort(a.begin(), a.end());
        for (auto x : a) {
            auto val = x.first;
            auto len = x.second;
            k -= len;
            if (k <= 0) return val;
        }
        return 0;
    }
    ll power(ll a, int b, int mod) {
        a %= mod;
        ll res = 1;
        for (; b; b /= 2, a = a * a % mod) {
            if (b % 2) {
                res = res * a % mod;
            }
        }
        return res;
    }
    //区间幂次和
    ll powersum(int l, int r, int x, int mod) {
        auto itr = split(r + 1), itl = split(l);
        ll ans = 0;
        for (auto it = itl; it != itr; it++) {
            ans = (ans + power(it->v, x, mod) * (it->r - it->l + 1) % mod) % mod;
        }
        return ans;
    }

    //区间一次和
    ll sum_one(int l,int r,ll mod){
        ll ret=0;
        auto itl=split(l),itr=split(r+1);
        for(;itl!=itr;itl++){
            ret=(ret+(itl->r-itl->l+1)*itl->v)%mod;
        }
        return ret;
    }

    //匹配暴力搜索(质数搭配欧拉筛)
    // void query(int l,int r){
    //     auto itr=split(r+1),itl=split(l);
	// 	int res = 0;
	// 	for (; itl != itr; itl ++ ){
	// 		if (itl->v <= 1e7 && !st[itl->v])
	// 			res += itl->r - itl->l + 1;
    //     }
    //     cout<<res<<"\n";
    // }
};

ODT++

//ODT++
const ll MOD = 1e9+7;
struct node {
    int l, r;
    mutable ll v;
    node(int l=0, int r = -1, ll v = 0) : l(l), r(r), v(v) {}
    bool operator<(const node &o) const {
        return l < o.l;
    }
};
#define MAXN 500010
node a[MAXN],b[MAXN];
struct ODT {
    set<node> s;
    ODT() {
        s.clear();
    }
    auto split(int pos) {
        auto it = s.lower_bound(node(pos));
        if (it != s.end() && it->l == pos) return it;
        it--;
        int l = it->l, r = it->r;
        ll v = it->v;
        s.erase(it);
        s.insert(node(l, pos - 1, v));
        return s.insert(node(pos, r, v)).first;
    }
    //区间赋值[推平]
    void assign(int l, int r, ll x) {
        auto itr = split(r + 1), itl = split(l) , it=itl;
        s.erase(it, itr);
        s.insert(node(l, r, x));
    }
    //区间加[l~r]每一个数加x
    void add(int l, int r, ll x) {
        auto itr = split(r + 1), itl = split(l);
        for (auto it = itl; it != itr; it++) {
            (it->v += x)%=MOD;
        }
    }
    //区间第k小
    ll kth(int l, int r, int k) {
        vector<pair<ll, int>> a;
        auto itr = split(r + 1), itl = split(l);
        for (auto it = itl; it != itr; it++) {
            a.push_back(pair<ll, int>(it->v, it->r - it->l + 1));
        }
        sort(a.begin(), a.end());
        for (auto x : a) {
            auto v = x.first;
            auto len = x.second;
            k -= len;
            if (k <= 0) return v;
        }
        return 0;
    }

    ll power(ll a, int b) {
        a %= MOD;
        ll res = 1;
        for (; b; b /= 2, a = a * a % MOD) {
            if (b % 2) {
                res = res * a % MOD;
            }
        }
        return res;
    }
    //区间幂次和
    ll powersum(int l, int r, int x) {
        auto itr = split(r + 1), itl = split(l);
        ll ans = 0;
        for (auto it = itl; it != itr; it++) {
            ans = (ans + power(it->v, x) * (it->r - it->l + 1) % MOD) % MOD;
        }
        return ans;
    }
    //区间一次和
    ll sum_one(int l,int r){
        ll ret=0;
        auto itl=split(l),itr=split(r+1);
        for(;itl!=itr;itl++){
            (ret+=(ll)(itl->r-itl->l+1)*itl->v)%=MOD;
        }
        return ret;
    }
    // 匹配暴力搜索(质数搭配欧拉筛)
    void query(int l,int r){
        auto itr=split(r+1),itl=split(l);
		int res = 0;
		for (; itl != itr; itl ++ ){
			// if (itl->v <= 1e7 && !st[itl->v])
			// 	res += itl->r - itl->l + 1;
        }
        cout<<res<<"\n";
    }
    void insert(const int& x,vector<int>& a){
        for(int i=1;i<=x;++i){
            s.insert(node(i,i,a[i]));
        }
    }
    void insert(int l,int r,int v){
        s.insert(node{l,r,v});
    }

    void copy(int l1,int r1,int l2,int r2){
        auto it1r=split(r1+1),it1l=split(l1);
        int len=0;
        for(auto it=it1l;it!=it1r;++it)
        {
            a[++len].l=it->l;
            a[len].r=it->r;
            a[len].v=it->v;
        }
        auto it2r=split(r2+1),it2l=split(l2);
        s.erase(it2l,it2r);
        for(int i=1;i<=len;++i)
        {
            s.insert(node(a[i].l - l1 + l2,a[i].r - l1 + l2,a[i].v));
        }
    }
    void Swap(int l1,int r1,int l2,int r2){
        if(l1>l2){swap(l1,l2);swap(r1,r2);}
        int len1=0,len2=0;
        auto it1r=split(r1+1),it1l=split(l1);
        for(auto it=it1l;it!=it1r;++it)
        {
            a[++len1].l=it->l;
            a[len1].r=it->r;
            a[len1].v=it->v;
        }
        auto it2r=split(r2+1),it2l=split(l2);
        for(auto it=it2l;it!=it2r;++it)
        {
            b[++len2].l=it->l;
            b[len2].r=it->r;
            b[len2].v=it->v;
        }
        it1r=split(r1+1),it1l=split(l1);
        s.erase(it1l,it1r);
        it2r=split(r2+1),it2l=split(l2);
        s.erase(it2l,it2r);
        for(int i=1;i<=len2;++i)s.insert(node(b[i].l - l2 + l1,b[i].r - l2 + l1,b[i].v));
        for(int i=1;i<=len1;++i)s.insert(node(a[i].l - l1 + l2,a[i].r - l1 + l2,a[i].v));
    }	
    void reverse(int l,int r){
        if(l>r)swap(l,r);
        auto it2=split(r+1),it1=split(l);
        int len=0;
        for(auto it=it1;it!=it2;++it)
        {
            a[++len].l=it->l;
            a[len].r=it->r;
            a[len].v=it->v;
        }
        s.erase(it1,it2);
        for(int i=1;i<=len;++i)
        {
            s.insert(node(r-a[i].r+l, r-a[i].l+l, a[i].v));
        }
    }
    void print(int n){
        for(auto it=s.begin();it!=s.end()&&it->r<=n;++it){
            for(int i=it->l;i<=it->r;++i) cout<<it->v<<" ";
        }
        cout<<"\n";
    }
};

树状数组

template <typename T>
struct Fenwick {
    int n;
    vector<T> w;

    Fenwick(int n) {
        this->n = n;
        w.resize(n + 1);
    }
    void add(int x, T k) {
        for (; x <= n; x += x & -x) {
            w[x] += k;
        }
    }
    void add(int x, int y, T k) { // 区间修改
        add(x, k), add(y + 1, -k);
    }
    T ask(int x) {  //单点查询
        auto ans = T();
        for (; x; x -= x & -x) {
            ans += w[x];
        }
        return ans;
    }
    T ask(int x, int y) { // 区间查询(区间和)
        return ask(y) - ask(x - 1);
    }
    int kth(T k) { //查找第k大的值
        int ans = 0;
        for (int i = __lg(n); i >= 0; i--) {
            int val = ans + (1 << i);
            if (val < n && w[val] < k) {
                k -= w[val];
                ans = val;
            }
        }
        return ans + 1;
    }
};

//逆序对封装
template <typename T>
struct BIT {
    int n;
    vector<int> w;

    BIT() {}
    void add(int x, int k) {
        for (; x <= n; x += x & -x) {
            w[x] += k;
        }
    }
    int ask(int x) {
        int ans = 0;
        for (; x; x -= x & -x) {
            ans += w[x];
        }
        return ans;
    }
    int ask(int x, int y) {
        return ask(y) - ask(x - 1);
    }
    int get(auto val) { // 获取逆序对数量
        this->n = val.size() - 1; // 注意 n 不能 +1
        w.resize(n + 1);

        vector<pair<int, int>> alls;
        for (int i = 1; i <= n; i++) {
            alls.emplace_back(val[i], i);
        }
        sort(alls.begin(), alls.end());

        int ans = 0;
        for (auto [val, idx] : alls) {
            ans += ask(idx + 1, n);
            add(idx, 1);
        }
        return ans;
    }
};

二维树状数组

//基础封装
template<typename T>
struct Fenwick2D {
    int n, m;
    vector<vector<T>> w;
    
    Fenwick2D(int n, int m) : n(n), m(m) {
        w.resize(n + 1, vector<T>(m + 1));
    }
    void add(int x, int y, T k) {
        for (int i = x; i <= n; i += i & -i) {
            for (int j = y; j <= m; j += j & -j) {
                w[i][j] += k;
            }
        }
    }
    void add(int x, int y, int X, int Y, T k) { // 区块修改:二维差分
        X++, Y++;
        add(x, y, k), add(X, y, -k);
        add(X, Y, k), add(x, Y, -k);
    }
    T ask(int x, int y) { // 单点查询
        T ans = 0;
        for (int i = x; i; i -= i & -i) {
            for (int j = y; j; j -= j & -j) {
                ans += w[i][j];
            }
        }
        return ans;
    }
    T ask(int x, int y, int X, int Y) { // 区块查询:二维前缀和
        x--, y--;
        return ask(X, Y) - ask(x, Y) - ask(X, y) + ask(x, y);
    }
};

//操作全支持,时间复杂度*4
template<typename T>
struct Fenwick2D {
    int n, m;
    vector<vector<T>> b1, b2, b3, b4;
    
    Fenwick2D(int n, int m) : n(n), m(m) {
        b1.resize(n + 1, vector<T>(m + 1));
        b2.resize(n + 1, vector<T>(m + 1));
        b3.resize(n + 1, vector<T>(m + 1));
        b4.resize(n + 1, vector<T>(m + 1));
    }
    void add(auto &w, int x, int y, T k) { // 单点修改
        for (int i = x; i <= n; i += i & -i) {
            for (int j = y; j <= m; j += j & -j) {
                w[i][j] += k;
            }
        }
    }
    void add(int x, int y, T k) { // 多了一步计算
        add(b1, x, y, k);
        add(b2, x, y, k * (x - 1));
        add(b3, x, y, k * (y - 1));
        add(b4, x, y, k * (x - 1) * (y - 1));
    }
    void add(int x, int y, int X, int Y, T k) { // 区块修改:二维差分
        X++, Y++;
        add(x, y, k), add(X, y, -k);
        add(X, Y, k), add(x, Y, -k);
    }
    T ask(auto &w, int x, int y) { // 单点查询
        T ans = 0;
        for (int i = x; i; i -= i & -i) {
            for (int j = y; j; j -= j & -j) {
                ans += w[i][j];
            }
        }
        return ans;
    }
    T ask(int x, int y) { // 多了一步计算
        T ans = 0;
        ans += x * y * ask(b1, x, y);
        ans -= y * ask(b2, x, y);
        ans -= x * ask(b3, x, y);
        ans += ask(b4, x, y);
        return ans;
    }
    T ask(int x, int y, int X, int Y) { // 区块查询:二维前缀和
        x--, y--;
        return ask(X, Y) - ask(x, Y) - ask(X, y) + ask(x, y);
    }
};

字符串

KMP

struct KMP{
    vector<int> ne;
    vector<int> pos;
    string s,p;

    KMP(string s,string p){
        ne.resize(p.size()+1);
        this->s=s,this->p=p;
        getNext(p);
    }

    KMP(string p){
        ne.resize(p.size()+1);
        this->p=p;
        getNext(p);
    }
    inline void getNext(string p) {
        int i=0,j;
        ne[0]=j=-1;
        while(i<p.size()) 
            if(j==-1 || p[i]==p[j])
                ne[++i]=++j;
            else j=ne[j];
    } 
    inline int work(){ 
        int cnt=0;
        int i=0,j=0;
        while(i<s.size()) { 
            if(j==-1 || s[i]==p[j])  
                i++,j++;
            else j=ne[j]; 
            if(j==p.size()){
                //剪断操作
                // j=0; 
                //不剪断
                pos.push_back(i-p.size());
                j=ne[j];
                cnt++;  
            }  
        } 
        return cnt;
    } 
    inline int MLoop(){
        return p.size()-ne[p.size()];
    }
};

字母trie

constexpr int N = 1000010;
int son[N][26],idx,cnt[N];
void insert(string str){
    int p=0;
    for(int i=0;i<str.size();i++){
        int u=str[i]-'a';
        if(!son[p][u]){
            son[p][u]=++idx;
        }
        p=son[p][u];
    }
    cnt[p]++;
}
int query(string str){
    int p=0;
    for(int i=0;i<str.size();i++){
        int u=str[i]-'a';
        if(!son[p][u]){
            return 0;
        }
        p=son[p][u];
    }
    // cnt[p]++;
    return cnt[p];
}

01trie

const int N = 100010;
int ch[31*N][2];
struct Trie {
    int n, idx;
    Trie(int n) {
        this->n = n;
        idx = 0;
    }
    void insert(int x) {
        int u = 0;
        for (int i = 30; ~i; i--) {
            int &v = ch[u][x >> i & 1];
            if (!v) v = ++idx;
            u = v;
        }
    }
    int query(int x) {
        int u = 0, res = 0;
        for (int i = 30; ~i; i--) {
            int v = x >> i & 1;
            if (ch[u][!v]) {
                res += (1 << i);
                u = ch[u][!v];
            } else {
                u = ch[u][v];
            }
        }
        return res;
    }
};

AC automaton

struct AhoCorasick {
    static constexpr int ALPHABET = 26;
    struct Node {
        int len;
        int link;
        std::array<int, ALPHABET> next;
        Node() : link{}, next{} {}
    };
    
    std::vector<Node> t;
    
    AhoCorasick() {
        init();
    }
    
    void init() {
        t.assign(2, Node());
        t[0].next.fill(1);
        t[0].len = -1;
    }
    
    int newNode() {
        t.emplace_back();
        return t.size() - 1;
    }
    
    int add(const std::vector<int> &a) {
        int p = 1;
        for (auto x : a) {
            if (t[p].next[x] == 0) {
                t[p].next[x] = newNode();
                t[t[p].next[x]].len = t[p].len + 1;
            }
            p = t[p].next[x];
        }
        return p;
    }
    
    int add(const std::string &a, char offset = 'a') {
        std::vector<int> b(a.size());
        for (int i = 0; i < a.size(); i++) {
            b[i] = a[i] - offset;
        }
        return add(b);
    }
    
    void work() {
        std::queue<int> q;
        q.push(1);
        
        while (!q.empty()) {
            int x = q.front();
            q.pop();
            
            for (int i = 0; i < ALPHABET; i++) {
                if (t[x].next[i] == 0) {
                    t[x].next[i] = t[t[x].link].next[i];
                } else {
                    t[t[x].next[i]].link = t[t[x].link].next[i];
                    q.push(t[x].next[i]);
                }
            }
        }
    }
    
    int next(int p, int x) {
        return t[p].next[x];
    }
    
    int next(int p, char c, char offset = 'a') {
        return next(p, c - 'a');
    }
    
    int link(int p) {
        return t[p].link;
    }
    
    int len(int p) {
        return t[p].len;
    }
    
    int size() {
        return t.size();
    }
};

Manacher

struct Manacher{
    string s;
    Manacher(string str):s(str){}
    vector<int> work(){
        int n = s.length();
        string t = "-#";
        for (int i = 0; i < n; i++) {
            t += s[i];
            t += '#';
        }
        int m = t.length();
        t += '+';
        int mid = 0, r = 0;
        vector<int> p(m);
        for (int i = 1; i < m; i++) {
            p[i] = i < r ? min(p[2 * mid - i], r - i) : 1;
            while (t[i - p[i]] == t[i + p[i]]) p[i]++;
            if (i + p[i] > r) {
                r = i + p[i];
                mid = i;
            }
        }
        return p;
    }
    int getMax(){
        int maxn=-INF;
        auto res=work();
        for(auto &v:res){
            maxn=max(maxn,v-1);
        }
        return maxn;
    }
};

标签:常用,return,int,res,ll,ACM,vector,const,模板
From: https://www.cnblogs.com/KrowFeather/p/18005737

相关文章

  • Kafka-常用命令行命令
    第一章Kafka常用命令1. Topic(主题)1.1. 创建Topicbin/kafka-topics.sh--create--bootstrap-serverhadoop01:9092 --replication-factor2 --partitions1 --topictest 1.2. 查询Topic列表1.2.1. 查询所有Topic列表bin/kafka-topics.sh--list--bootstrap-ser......
  • 邮件营销模板怎么写?3种写法教你大进箱率
    邮件营销模板的制作对于推广活动的成功至关重要。一封引人入胜的邮件可以让你的目标受众心动,进而促成销售或者其他期望的行动。但是,如何撰写出高效的邮件营销模板呢?以下将介绍三种写作方法,助你提升大进箱率。1.了解目标受众邮件营销模板的第一步是了解你的目标受众。在撰写之前,对......
  • MyBatis的常用动态标签
    1、<sql><!--<sqlid=""></sql>:设置一段SQL片段,即公共SQL,可以被当前映射文件中所有的SQL语句所访问<includerefid="empColumns"></include>:访问某个SQL片段--><sqlid="empColumns">selecteid,ename,age,sex,d......
  • 在Unity中快速生成基于模板的Lua脚本
    在学习Xlua时,这个工具提供了一个简单而强大的方式来快速生成基于模板的Lua脚本,有助于提高开发效率和保持代码的一致性。1.xlua框架导入在GitHub上搜索xlua,找到腾讯的xlua项目,下载项目的压缩包。然后将压缩包里的Plugins和XLua这两个文件夹导入Unity的Assets目录下,如下图所示:2.......
  • hdu 1312 Red and Black (BFS模板题)
    Problem-1312(hdu.edu.cn)BFS模板题#include<iostream>#include<queue>usingnamespacestd;typedeflonglongll;constintINF=0x3f3f3f3f;intwx,hy,num;charroom[25][25];#defineCHECK(x,y)(x>=0&&x<wx&&y>=0&&am......
  • Windows Server 2022 OVF, updated Jan 2024 (sysin) - VMware 虚拟机模板
    WindowsServer2022OVF,updatedJan2024(sysin)-VMware虚拟机模板2024年1月版本更新,现在自动运行sysprep,支持ESXiHostClient部署请访问原文链接:https://sysin.org/blog/windows-server-2022-ovf/,查看最新版。原创作品,转载请保留出处。作者主页:sysin.org现在......
  • 基础算法(十)差分模板---以题为例
    输入一个长度为 n的整数序列。接下来输入 m个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r]之间的每个数加上 c。请你输出进行完所有操作后的序列。输入格式第一行包含两个整数 n 和 m。第二行包含 n 个整数,表示整数序列。接下来 m 行,每行包含三个整数 l,r......
  • 软件测试的常用指标和度量方法总结,如何进行测试效果评估和质量度量?
    前言大家好,我是chowley,我总结了一些测试的常用指标和度量方法,今天总结成博客发出来和大家一起探讨!软件测试是确保软件质量的关键步骤之一。为了全面评估测试的效果和软件的质量,我们需要依赖一系列的指标和度量方法。常用指标和度量方法1.代码覆盖率(CodeCoverage)代码覆盖率度......
  • 基础算法(九)二维前缀和模板---以题为例
    输入一个 n 行 m的整数矩阵,再输入q 个询问,每个询问包含四个整数 x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。对于每个询问输出子矩阵中所有数的和。输入格式第一行包含三个整数 n,m,q。接下来 n行,每行包含m 个整数,表示整数矩阵。接下来 q 行,每行包含四个......
  • 基础算法(八)前缀和模板---以前缀和题目为例
    题目如下输入一个长度为 n的整数序列。接下来再输入 m个询问,每个询问输入一对 l,r。对于每个询问,输出原序列中从第 l 个数到第 r个数的和。输入格式第一行包含两个整数 n 和 m。第二行包含 n 个整数,表示整数数列。接下来 m 行,每行包含两个整数 l 和 r,......