# coding:utf8 # 指定源代码编码格式为UTF-8 from pyspark.sql import SparkSession # 导入SparkSession类,用于创建和管理Spark应用上下文 from pyspark.sql.functions import concat, expr, col # 导入Spark SQL中的函数,这里并未使用但可能在后续操作中用于数据转换或计算 from pyspark.sql.types import StructType, StringType, IntegerType # 导入数据类型,用于定义DataFrame的结构 from pyspark.sql import functions as F # 更短的引用方式,指向pyspark.sql.functions模块 if __name__ == '__main__': # 创建一个本地SparkSession实例,设置应用程序名为"test",并配置shuffle分区数为2 spark = SparkSession.builder.appName("test").master("local[*]").config("spark.sql.shuffle.partitions", 2).getOrCreate() # 从指定路径读取CSV文件,并将数据加载到DataFrame中,默认不包含列名头,以逗号作为分隔符 df = spark.read.csv('../data/sql/stu.txt', sep=',', header=False) df.select(F.concat_ws("---","user_id","rank","ts")).\ write.\ mode("overwrite").\ format("text").\ save("../data/output/sql/text") df.write.mode("overwrite").\ format("csv").\ option("sep",",").\ option("header",True).\ save("../data/output/sql/csv") df.write.mode("overwrite").\ format("json"). \ save("../data/output/sql/json") #不写format默认为parquet df.write.mode("overwrite").\ format("parquet"). \ save("../data/output/sql/parquet") #写入 df.write.mode("overwrite").\ format("jdbc").\ option("url","jdbc:mysql://.200:3306/book?useSSL=false&useUnicode=true&allowPublicKeyRetrieval=true&serverTimezone=UTC").\ option("dbtable","word_count").\ option("user","root").\ option("password","222222").\ save() #读取 df=spark.read.format("jdbc").\ option("url","jdbc:mysql://.200:3306/book?useSSL=false&useUnicode=true&allowPublicKeyRetrieval=true&serverTimezone=UTC").\ option("dbtable","word_count").\ option("user","root").\ option("password","222222").\ load()
sparksql的写入写出、
标签:26,option,format,df,指导,寒假,mode,sql,pyspark From: https://www.cnblogs.com/syhxx/p/18005026