# https://www.chilimath.com/lessons/advanced-algebra/cramers-rule-with-two-variables # https://en.wikipedia.org/wiki/Cramer%27s_rule from typing import List,Tuple def cramers_rule_2x2(equation1: List[int], equation2: List[int]) -> Tuple[float, float]: """ 解决包含两个变量的线性方程组。 :param: equation1: 包含3个数字的列表 :param: equation2: 包含3个数字的列表 :return: 结果的元组 输入格式: [a1, b1, d1], [a2, b2, d2] 行列式 = [[a1, b1], [a2, b2]] 行列式_x = [[d1, b1], [d2, b2]] 行列式_y = [[a1, d1], [a2, d2]] >>> cramers_rule_2x2([2, 3, 0], [5, 1, 0]) (0.0, 0.0) >>> cramers_rule_2x2([0, 4, 50], [2, 0, 26]) (13.0, 12.5) >>> cramers_rule_2x2([11, 2, 30], [1, 0, 4]) (4.0, -7.0) >>> cramers_rule_2x2([4, 7, 1], [1, 2, 0]) (2.0, -1.0) >>> cramers_rule_2x2([1, 2, 3], [2, 4, 6]) Traceback (most recent call last): ... ValueError: 无穷解(一致系统) >>> cramers_rule_2x2([1, 2, 3], [2, 4, 7]) Traceback (most recent call last): ... ValueError: 无解(不一致系统) >>> cramers_rule_2x2([1, 2, 3], [11, 22]) Traceback (most recent call last): ... ValueError: 请输入有效的方程。 >>> cramers_rule_2x2([0, 1, 6], [0, 0, 3]) Traceback (most recent call last): ... ValueError: 无解(不一致系统) >>> cramers_rule_2x2([0, 0, 6], [0, 0, 3]) Traceback (most recent call last): ... ValueError: 两个方程的a和b不能都为零。 >>> cramers_rule_2x2([1, 2, 3], [1, 2, 3]) Traceback (most recent call last): ... ValueError: 无穷解(一致系统) >>> cramers_rule_2x2([0, 4, 50], [0, 3, 99]) Traceback (most recent call last): ... ValueError: 无解(不一致系统) """ # 检查输入是否有效 if not len(equation1) == len(equation2) == 3: raise ValueError("请输入有效的方程。") if equation1[0] == equation1[1] == equation2[0] == equation2[1] == 0: raise ValueError("两个方程的a和b不能都为零。") # 提取系数 a1, b1, c1 = equation1 a2, b2, c2 = equation2 # 计算矩阵的行列式 determinant = a1 * b2 - a2 * b1 determinant_x = c1 * b2 - c2 * b1 determinant_y = a1 * c2 - a2 * c1 # 检查线性方程组是否有解(使用克莱姆法则) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("无穷解(一致系统)") else: raise ValueError("无解(不一致系统)") else: if determinant_x == determinant_y == 0: # 平凡解(不一致系统) return (0.0, 0.0) else: x = determinant_x / determinant y = determinant_y / determinant # 非平凡解(一致系统) return (x, y)
标签:...,determinant,克拉默,法则,rule,cramers,2x2,ValueError From: https://www.cnblogs.com/mlhelloworld/p/18001657