EMBEDDING ENTITIES AND RELATIONS FOR LEARNING AND INFERENCE IN KNOWLEDGE BASES
ICLR 2015
abstract
-
most exsiting model under a unfied framework, where entities are low-dimensional vectors learned from a neural network and relations are bilinear and/or linear mapping funtions.
-
evaluate different choices of entity representations and relation representations under this framework on canonical link prediction task.
show a simple bilinear and/or linear formulation achieve new SOTA. -
a novel approach that utilizes the learned embeddings to mine logical rules.
bilinear-diag: DistMult
TransE: DistADD
文章里说是: hM_rt, 但是网上查的教程都说:
好像就是改了个得分函数,h+t-r改成了htr。。。
不知道为什么变成直接乘了。。
看了pykg2vec的代码,也不知道rel怎么限制成diagonal的。。。
限制
由于是对角矩阵, 所以无法对inverse有作用
但是要是直接相乘,好像非对角矩阵也无法对inverse有作用啊