这样我们 Controller 中的入口函数就变成了下面这样:
func CreateOrder(ctx context.Context, req *CreateOrderStruct) (
*CreateOrderRespStruct, error,
) {
// ...
}
CreateOrder 有两个参数,ctx 用来传入 trace_id 一类的需要串联请求的全局参数,req 里存储了我们创建订单所需要的所有输入信息。返回结果是一个响应结构体和错误。可以认为,我们的代码运行到 Controller 层之后,就没有任何与“协议”相关的代码了。在这里你找不到 http.Request ,也找不到 http.ResponseWriter,也找不到任何与 thrift 或者 gRPC 相关的字眼。
在协议 (Protocol) 层,处理 http 协议的大概代码如下:
// 在协议层中定义
type CreateOrderRequest struct {
OrderID int64 `json:"order_id"`
// ...}
// 在控制器中定义
type CreateOrderParams struct {
OrderID int64
}
func HTTPCreateOrderHandler(wr http.ResponseWriter, r *http.Request)
{
var req CreateOrderRequest
var params CreateOrderParams
ctx := context.TODO()
// 将数据绑定到 req
bind(r, &req)
// 绑定到独立于协议的映射协议
map(req, params)
logicResp,err := controller.CreateOrder(ctx, ¶ms)
if err != nil {}
// ...}
理论上我们可以用同一个请求结构体组合上不同的 tag,来达到一个结构体来给不同的协议复用的目的。不过遗憾的是在 thrift 中,请求结构体也是通过 IDL 生成的,其内容在自动生成的 ttypes.go 文件中,我们还是需要在 thrift 的入口将这个自动生成的结构体映射到我们 logic 入口所需要的结构体上。gRPC 也是类似。这部分代码还是需要的。
大家可能已经可以看出来了,协议细节处理这一层实际上有大量重复劳动,每一个接口在协议这一层的处理,无非是把数据从协议特定的结构体(例如 http.Request,thrift 的被包装过了)读出来,再绑定到我们协议无关的结构体上,再把这个结构体映射到 Controller 入口的结构体上,这些代码实际上长得都差不多。
差不多的代码都遵循着某种模式,那么我们可以对这些模式进行简单的抽象,用代码生成的方式,把繁复的协议处理代码从工作内容中抽离出去。
先来看看 HTTP 对应的结构体、thrift 对应的结构体和我们协议无关的结构体分别长什么样子:
// http 请求结构体type CreateOrder struct {
OrderID int64 `json:"order_id" validate:"required"`
UserID int64 `json:"user_id" validate:"required"`
ProductID int `json:"prod_id" validate:"required"`
Addr string `json:"addr" validate:"required"`
}
// thrift 请求结构体type FeatureSetParams struct {
DriverID int64 `thrift:"driverID,1,required"`
OrderID int64 `thrift:"OrderID,2,required"`
UserID int64 `thrift:"UserID,3,required"`
ProductID int `thrift:"ProductID,4,required"`
Addr string `thrift:"Addr,5,required"`
}
// controller input structtype CreateOrderParams struct {
OrderID int64
UserID int64
ProductID int
Addr string}
我们需要通过一个源结构体来生成我们需要的 HTTP 和 thrift 入口代码。再观察一下上面定义的三种结构体,实际上我们只要能用一个结构体生成 thrift 的 IDL,以及 HTTP 服务的“IDL(实际上就是带 json 或 form 相关 tag 的结构体定义)”就可以了。这个初始的结构体我们可以把结构体上的 HTTP 的 tag 和 thrift 的 tag 揉在一起:
type FeatureSetParams struct {
DriverID int64 `thrift:"driverID,1,required" json:"driver_id"`
OrderID int64 `thrift:"OrderID,2,required" json:"order_id"`
UserID int64 `thrift:"UserID,3,required" json:"user_id"`
ProductID int `thrift:"ProductID,4,required" json:"prod_id"`
Addr string `thrift:"Addr,5,required" json:"addr"`}
然后通过代码生成把 thrift 的 IDL 和 HTTP 的请求结构体都生成出来,如下图所示
至于用什么手段来生成,可以通过 Go语言内置的 Parser 读取文本文件中的 Go 源代码,然后根据 AST 来生成目标代码,也可以简单地把这个源结构体和 Generator 的代码放在一起编译,让结构体作为 Generator 的输入参数(这样会更简单一些),都是可以的。
当然这种思路并不是唯一选择,我们还可以通过解析 thrift 的 IDL,生成一套 HTTP 接口的结构体。如果你选择这么做,那整个流程就变成了下图所示。
图:也可以从 thrift 生成其它部分
看起来比之前的图顺畅一点,不过如果选择了这么做,就需要自行对 thrift 的 IDL 进行解析,也就是相当于可能要手写一个 thrift 的 IDL 的 Parser,虽然现在有 Antlr 或者 peg 能帮你简化这些 Parser 的书写工作,但在“解析”的这一步我们不希望引入太多的工作量,所以量力而行即可。
既然工作流已经成型,我们可以琢磨一下怎么让整个流程对用户更加友好。比如在前面的生成环境引入 Web 页面,只要让用户点点鼠标就能生成 SDK,这些就靠大家自己去探索了。
虽然我们成功地使自己的项目在入口支持了多种交互协议,但是还有一些问题没有解决。本节中所叙述的分层没有将中间件作为项目的分层考虑进去。如果我们考虑中间件的话,请求的流程是什么样的?见下图所示。
图:加入中间件后的控制流
之前我们学习的中间件是和 HTTP 协议强相关的,遗憾的是在 thrift 中看起来没有和 HTTP 中对等的解决这些非功能性逻辑代码重复问题的中间件。所以我们在图上写 thrift stuff 。这些 stuff 可能需要你手写去实现,然后每次增加一个新的 thrift 接口,就需要去写一遍这些非功能性代码。
这也是很多企业项目所面临的真实问题,遗憾的是开源界并没有这样方便的多协议中间件解决方案。当然了,前面我们也说过,很多时候我们给自己保留的 HTTP 接口只是用来做调试,并不会暴露给外人用。这种情况下,这些非功能性的代码只要在 thrift 的代码中完成即可。
标签:Web,HTTP,required,server,json,portal,int64,结构,thrift From: https://www.cnblogs.com/codestack/p/17973233