首页 > 其他分享 >[工程题] THUSC 2023 Day2 奋斗四小时,手搓 CPU

[工程题] THUSC 2023 Day2 奋斗四小时,手搓 CPU

时间:2024-01-18 13:12:00浏览次数:40  
标签:15 int 2023 Day2 ++ solve printf type CPU

https://www.luogu.com.cn/contest/110331

https://www.luogu.com.cn/team/44709#problem

可以在 https://www.luogu.com.cn/problem/T335306 下载 manual.pdf,在 https://www.luogu.com.cn/problem/T335313 下载 statement.pdfsimulator.cpp

组合逻辑电路部分

此部分的要求详见 statement.pdf 的第 \(\symbfit{3}\) 页。

(40pts) Task1 投票器

题面详见 statement.pdf 的第 \(\symbfit{4}\) 页。

只需要看两两 AND 的结果有没有 \(1\) 即可。如果有,那么代表 \(A + B + C \geq 2\),反之 \(A + B + C < 2\)。

也就是说:

5=AND(1,2);6=AND(1,3);7=AND(2,3);4=OR(5,6,7);

即可满分。

(20pts) Task2 译码器

题面详见 statement.pdf 的第 \(\symbfit{5}\) 页。

首先把 \(A\) 的每一位按位取反,枚举 \(0 \sim 31\) 的每一个数的每一位,如果是 \(1\) 直接调用 \(A\) 的相应位,否则调用 \(\neg A\) 的相应位。把这些 AND 起来。最后别忘了 AND 一下 \(E\)。

#include <bits/stdc++.h>
using namespace std;
inline void solve (int a, string type, vector < int > b) {
  int n = b.size ();
  printf ("%d=", a);
  int m = type.size ();
  for (int i = 0;i < m; ++ i) putchar (type[i]);
  printf ("(");
  for (int i = 0;i < n; ++ i) {
    assert (a != b[i]);
    printf ("%d", b[i]);
    if (i + 1 < n) printf (",");
    else printf (");");
  }
  return ;
}
int binary[5][2];
signed main () {
  for (int i = 0;i < 5; ++ i) binary[i][1] = i + 2;
  for (int i = 0;i < 5; ++ i) {
    binary[i][0] = i + 39;
    solve (binary[i][0], "NOT", {binary[i][1]});
  }
  for (int i = 0;i < 32; ++ i) {
    int cur = i + 7;
    vector < int > st;
    st.clear ();
    st.push_back (1);
    for (int j = 0;j < 5; ++ j) {
      if (i & (1 << j)) st.push_back (binary[j][1]);
      else st.push_back (binary[j][0]);
    }
    solve (cur, "AND", st);
  }
  return 0;
}

(20pts) Task3 选择器

题面详见 statement.pdf 的第 \(\symbfit{6 \sim 7}\) 页。

和 Task2 的原理差不多,只需要把 \(D\) 和 \(A\) 的译码器 AND 起来即可,设得到的是 \(D'\),那么 \(R\) 就是 \(\text{OR}(D'_0, D'_1, \dots, D'_{31})\)。

#include <bits/stdc++.h>
using namespace std;
inline void solve (int a, string type, vector < int > b) {
  int n = b.size ();
  printf ("%d=", a);
  int m = type.size ();
  for (int i = 0;i < m; ++ i) putchar (type[i]);
  printf ("(");
  for (int i = 0;i < n; ++ i) {
    assert (a != b[i]);
    printf ("%d", b[i]);
    if (i + 1 < n) printf (",");
    else printf (");");
  }
  return ;
}
inline void solve2 (int a, int b) {printf ("%d=%d;", a, b); return ;}
int binary[5][2];
signed main () {
  for (int i = 0;i < 5; ++ i) binary[i][1] = i + 2;
  for (int i = 0;i < 5; ++ i) {
    binary[i][0] = i + 40;
    solve (binary[i][0], "NOT", {binary[i][1]});
  }
  for (int i = 0;i < 32; ++ i) {
    int cur = i + 45;
    vector < int > st;
    st.clear ();
    for (int j = 0;j < 5; ++ j) {
      if (i & (1 << j)) st.push_back (binary[j][1]);
      else st.push_back (binary[j][0]);
    }
    st.push_back (i + 7);
    solve (cur, "AND", st);
  }
  solve2 (77, 45);
  int cur = 77;
  for (int i = 78, j = 46;j <= 76; ++ i, ++ j) solve (i, "OR", {i - 1, j}), cur = i;
  solve (39, "AND", {1, cur});
  return 0;
}

(20pts) Task4 比较器

题面详见 statement.pdf 的第 \(\symbfit{8}\) 页。

若存在 \(i\) 满足 \(0 \leq i \leq 15\),并且对于所有的 \(i < j \leq 15\) 有 \(A_j = B_j\),并且有 \(A_i < B_i\),那么就有 \(A < B\)。

这个主要难度在于代码实现,这里推荐固定的位置,写到注释里面在写代码。

#include <bits/stdc++.h>
using namespace std;
inline void solve (int a, string type, vector < int > b) {
  int n = b.size ();
  printf ("%d=", a);
  int m = type.size ();
  for (int i = 0;i < m; ++ i) putchar (type[i]);
  printf ("(");
  for (int i = 0;i < n; ++ i) {
    assert (a != b[i]);
    printf ("%d", b[i]);
    if (i + 1 < n) printf (",");
    else printf (");");
  }
  return ;
}
inline void solve2 (int a, int b) {printf ("%d=%d;", a, b); return ;}
int cnts;
/*
 34 -  49: compare   := [a_15 < b_15], [a_14 < b_14], ..., [a_0 < b_0];
 50 -  65: prefix    := [a_15 = b_15], [a_14 = b_14], ..., [a_0 = b_0];
 66 -  81: satisfy   := [ok_15], [ok_14], ..., [ok_0];
 33 -  33: answer    := OR (66, 67, ..., 81);
 82 -  97: satisfy   := [a_15 = 0], [a_14 = 0], ..., [a_0 = 0];
 98 - 113: satisfy   := [b_15 = 1], [b_14 = 1], ..., [b_0 = 1];
binary (a < b) => a = 0 & b = 1
extra varibles:
114 := number 0;
115 := number 1;
116 := input 1
*/
inline void create () {cnts ++; return ;}
signed main () {
  cnts = 116;
  solve2 (116, 1);
  solve (114, "XOR", {1, 116});
  solve (115, "NXOR", {1, 116});
  for (int i = 82, j = 16;i <= 97; ++ i, -- j) solve (i, "NXOR", {j, 114});
  for (int i = 98, j = 32;i <= 113; ++ i, -- j) solve2 (i, j);
  for (int i = 34, j = 82, k = 98;i <= 49; ++ i, ++ j, ++ k) solve (i, "AND", {j, k});
  solve (50, "NXOR", {16, 32});
  for (int i = 51, j = 15, k = 31;i <= 65; ++ i, -- j, -- k) {
    create ();
    solve (cnts, "NXOR", {j, k});
    solve (i, "AND", {i - 1, cnts});
  }
  solve2 (66, 34);
  for (int i = 67, j = 35, k = 50;i <= 81; ++ i, ++ j, ++ k) solve (i, "AND", {j, k});
  create (), solve2 (cnts, 66);
  for (int j = 67;j <= 81; ++ j) {
    create (), solve (cnts, "OR", {cnts - 1, j});
  }
  solve2 (33, cnts);
  return 0;
}

(20pts) Task5 加法器

题面详见 statement.pdf 的第 \(\symbfit{9}\) 页。

这个比较简单,只需要从低位到高位手动进位即可。具体见代码。

#include <bits/stdc++.h>
using namespace std;
inline void solve (int a, string type, vector < int > b) {
  int n = b.size ();
  printf ("%d=", a);
  int m = type.size ();
  for (int i = 0;i < m; ++ i) putchar (type[i]);
  printf ("(");
  for (int i = 0;i < n; ++ i) {
    assert (a != b[i]);
    printf ("%d", b[i]);
    if (i + 1 < n) printf (",");
    else printf (");");
  }
  return ;
}
inline void solve2 (int a, int b) {printf ("%d=%d;", a, b); return ;}
int cur, cnts, zero, one;
inline int newnode () {cnts ++; return cnts;}
inline int solve_add (int result, int a, int b, int addbit) {
  solve (result, "XOR", {a, b, addbit});
  int u = newnode ();
  int v0 = newnode (), v1 = newnode (), v2 = newnode ();
  solve (v0, "AND", {a, b});
  solve (v1, "AND", {a, addbit});
  solve (v2, "AND", {b, addbit});
  solve (u, "OR", {v0, v1, v2});
  return u;
}
inline void init () {
  int u = newnode ();
  zero = newnode ();
  one = newnode ();
  solve2 (u, 1);
  solve (zero, "XOR", {1, u});
  solve (one, "NXOR", {1, u});
  return ;
}
signed main () {
  cnts = 48;
  cur = newnode ();
  init ();
  solve2 (cur, zero);
  for (int i = 33, j = 1, k = 17;i <= 48; ++ i, ++ j, ++ k) cur = solve_add (i, j, k, cur);
  return 0;
}

(40pts) Task5ex 超前进位加法器

题面详见 statement.pdf 的第 \(\symbfit{10}\) 页。

这个我还不会。

(40pts) 组合逻辑部分 Task6 ALU

题面详见 statement.pdf 的第 \(\symbfit{11 \sim 12}\) 页。

这个巨难写!

首先是先把 \(8\) 种 \(Y\) 都算出来,然后写一个 \(\text{op}[0 \sim 2]\) 的译码器,算答案的每一位时,把每一种 \(Y\) 都 AND 上译码器的相应位,然后都 OR 起来就是这一位的答案。

  • \(A + B, A \wedge B, A \vee B, A \oplus B, \neg A\) 都是平凡的,这里不再赘述。

  • \(A - B\) 可以在 \(\bmod 2^{16}\) 的意义下算,显然 \(-B\) 在 \(\bmod 2^{16}\) 意义下等于 \(2^{16} - B = 2^{16} - 1 - B + 1\),然后发现 \(2^{16} - 1 - B\) 等于 \(\neg B\),所以 \(-B\) 在 \(\bmod 2^{16}\) 意义下等于 \(\neg B + 1\)。

  • \(A\) 左移 \(B \wedge 15\) 位和 \(A\) 右移 \(B \wedge 15\) 位是本质相同的,所以这里只讨论 \(A\) 右移 \(B \wedge 15\) 位。首先我们可以考虑把 \(A\) 右移 \(0 \sim 15\) 位都算出来,然后用类似计算答案的每一位的原理计算出 \(A ≫ (B \wedge 15)\),建议写注释,难度在于代码实现。

#include <bits/stdc++.h>
using namespace std;
inline void solve (int a, string type, vector < int > b) {
  if (type == "NOT") assert (b.size () == 1);
  int n = b.size ();
  printf ("%d=", a);
  int m = type.size ();
  for (int i = 0;i < m; ++ i) putchar (type[i]);
  printf ("(");
  for (int i = 0;i < n; ++ i) {
    assert (a != b[i]);
    printf ("%d", b[i]);
    if (i + 1 < n) printf (",");
    else printf (");");
  }
  return ;
}
inline void solve2 (int a, int b) {
  printf ("%d=%d;", a, b);
  return ;
}
int cnts;
inline int newnode () {cnts ++; return cnts;}
/*
list 1:
001 ~ 003 := op[0 ~ 2]
004 ~ 019 := a[0 ~ 15]
020 ~ 035 := b[0 ~ 15]
036 ~ 051 := y[0 ~ 15]
052 ~ 059 := op?[0 ~ 7]
060 ~ 075 := c(a + b)[0 ~ 15]
076 ~ 078 := !op[0 ~ 2]
082 ~ 097 := c(a & b)[0 ~ 15]
098 ~ 113 := c(a | b)[0 ~ 15]
114 ~ 129 := c(a ^ b)[0 ~ 15]
130 ~ 145 := c(!a)[0 ~ 15]
146 ~ 161 := (!b)[0 ~ 15]
162 ~ 177 := ((!b) + 1)[0 ~ 15]
178 ~ 193 := (a + (!b) + 1)[0 ~ 15]
194 ~ 197 := (b & 15)[0 ~ 3]
199 ~ 202 := !(b & 15)[0 ~ 3]
215 ~ 230 := choose(b & 15)[0 ~ 15]
231 ~ 246 := (a >> 0)
247 ~ 262 := (a >> 1)
263 ~ 278 := (a >> 2)
279 ~ 294 := (a >> 3)
295 ~ 310 := (a >> 4)
311 ~ 326 := (a >> 5)
327 ~ 342 := (a >> 6)
343 ~ 358 := (a >> 7)
359 ~ 374 := (a >> 8)
375 ~ 390 := (a >> 9)
391 ~ 406 := (a >> 10)
407 ~ 422 := (a >> 11)
423 ~ 438 := (a >> 12)
439 ~ 454 := (a >> 13)
455 ~ 470 := (a >> 14)
471 ~ 486 := (a >> 15)
487 ~ 502 := (a >> (b & 15))
other variables:
079 := number 0
080 := number 1
081 := input 0
*/
namespace rightmove {
  int leftpoint[16]  = {231, 247, 263, 279, 295, 311, 327, 343, 359, 375, 391, 407, 423, 439, 455, 471};
  int rightpoint[16] = {246, 262, 278, 294, 310, 326, 342, 358, 374, 390, 406, 422, 438, 454, 470, 486};
  #define L leftpoint
  #define R rightpoint
  inline void init_b_AND_15 () {
    for (int i = 194, j = 20;i <= 197; ++ i, ++ j) solve2 (i, j);
    for (int i = 199, j = 20;i <= 202; ++ i, ++ j) solve (i, "NOT", {j});
    return ;
  }
  inline void init_choose_b_AND_15 () {
    for (int i = 215, j = 0;i <= 230; ++ i, ++ j) {
      vector < int > st;
      st.clear ();
      for (int k = 0;k < 4; ++ k) {
        if (j & (1 << k)) st.push_back (k + 194);
        else st.push_back (k + 199);
      }
      solve (i, "AND", st);
    }
    return ;
  }
  inline void rightmove_bits (int x) {
    for (int i = L[x], j = x + 4;i <= R[x]; ++ i, ++ j) {
      if (j <= 19) solve2 (i, j);
      else solve2 (i, 79);
    }
    return ;
  }
  inline void init_rightmove_of_a () {
    for (int i = 0;i <= 15; ++ i) rightmove_bits (i);
    return ;
  }
  inline void solveall () {
    init_b_AND_15 ();
    init_choose_b_AND_15 ();
    init_rightmove_of_a ();
    for (int i = 487, cur = 231;i <= 502; ++ i, ++ cur) {
      vector < int > st;
      st.clear ();
      for (int j = 0, k = cur;j <= 15; ++ j, k += 16) {
        int u = newnode ();
        solve (u, "AND", {j + 215, k});
        st.push_back (u);
      }
      int u = newnode (), v = newnode ();
      solve (u, "OR", {st[0], st[1], st[2], st[3], st[4], st[5], st[6], st[7]});
      solve (v, "OR", {st[8], st[9], st[10], st[11], st[12], st[13], st[14], st[15]});
      solve (i, "OR", {u, v});
    }
    return ;
  }
  #undef L
  #undef R
}
/*
list 2:
503 ~ 518 := (a << 0)
519 ~ 534 := (a << 1)
535 ~ 550 := (a << 2)
551 ~ 566 := (a << 3)
567 ~ 582 := (a << 4)
583 ~ 598 := (a << 5)
599 ~ 614 := (a << 6)
615 ~ 630 := (a << 7)
631 ~ 646 := (a << 8)
647 ~ 662 := (a << 9)
663 ~ 678 := (a << 10)
679 ~ 694 := (a << 11)
695 ~ 710 := (a << 12)
711 ~ 726 := (a << 13)
727 ~ 742 := (a << 14)
743 ~ 758 := (a << 15)
759 ~ 774 := (a << (b & 15))
*/
namespace leftmove {
  int leftpoint[16]  = {503, 519, 535, 551, 567, 583, 599, 615, 631, 647, 663, 679, 695, 711, 727, 743};
  int rightpoint[16] = {518, 534, 550, 566, 582, 598, 614, 630, 646, 662, 678, 694, 710, 726, 742, 758};
  #define L leftpoint
  #define R rightpoint
  inline void leftmove_bits (int x) {
    for (int i = L[x], j = 4 - x;i <= R[x]; ++ i, ++ j) {
      if (j >= 4) solve2 (i, j);
      else solve2 (i, 79);
    }
    return ;
  }
  inline void init_leftmove_of_a () {
    for (int i = 0;i <= 15; ++ i) leftmove_bits (i);
    return ;
  }
  inline void solveall () {
    init_leftmove_of_a ();
    for (int i = 759, cur = 503;i <= 774; ++ i, ++ cur) {
      vector < int > st;
      st.clear ();
      for (int j = 0, k = cur;j <= 15; ++ j, k += 16) {
        int u = newnode ();
        solve (u, "AND", {j + 215, k});
        st.push_back (u);
      }
      int u = newnode (), v = newnode ();
      solve (u, "OR", {st[0], st[1], st[2], st[3], st[4], st[5], st[6], st[7]});
      solve (v, "OR", {st[8], st[9], st[10], st[11], st[12], st[13], st[14], st[15]});
      solve (i, "OR", {u, v});
    }
    return ;
  }
  #undef L
  #undef R
}
inline int solve_add (int result, int a, int b, int addbit) {
  solve (result, "XOR", {a, b, addbit});
  int u = newnode ();
  int v0 = newnode (), v1 = newnode (), v2 = newnode ();
  solve (v0, "AND", {a, b});
  solve (v1, "AND", {a, addbit});
  solve (v2, "AND", {b, addbit});
  solve (u, "OR", {v0, v1, v2});
  return u;
}
inline void init () {
  solve2 (81, 1);
  solve (79, "XOR", {1, 81});
  solve (80, "NXOR", {1, 81});
  return ;
}
int binary[3][2], op[8];
signed main () {
//  freopen ("answer.txt", "w", stdout);
  cnts = 774;
  init ();
  binary[0][1] = 1, binary[1][1] = 2, binary[2][1] = 3;
  binary[0][0] = 76, binary[1][0] = 77, binary[2][0] = 78;
  for (int i = 0;i < 8; ++ i) op[i] = i + 52;
  for (int i = 76;i <= 78; ++ i) {
    int id = i - 75;
    solve (i, "NOT", {id});
  }
  for (int i = 146, j = 20;i <= 161; ++ i, ++ j) solve (i, "NOT", {j});
  int cur = newnode ();
  solve2 (cur, 79);
  for (int i = 162, j = 146;i <= 177; ++ i, ++ j) {
    int val = (i == 162) ? (80) : (79);
    cur = solve_add (i, j, val, cur);
  }
  for (int i = 0, j = 52;i <= 7; ++ i, ++ j) {
    vector < int > st;
    st.clear ();
    for (int k = 0;k < 3; ++ k) {
      if (i & (1 << k)) st.push_back (binary[k][1]);
      else st.push_back (binary[k][0]);
    }
    solve (j, "AND", st);
  }
  cur = newnode ();
  solve2 (cur, 79);
  for (int i = 178, j = 4, k = 162;i <= 193; ++ i, ++ j, ++ k) cur = solve_add (i, j, k, cur);
  cur = newnode ();
  solve2 (cur, 79);
  for (int i = 60, j = 4, k = 20;i <= 75; ++ i, ++ j, ++ k) cur = solve_add (i, j, k, cur);
  for (int i = 82, j = 4, k = 20;i <= 97; ++ i, ++ j, ++ k) solve (i, "AND", {j, k});
  for (int i = 98, j = 4, k = 20;i <= 113; ++ i, ++ j, ++ k) solve (i, "OR", {j, k});
  for (int i = 114, j = 4, k = 20;i <= 129; ++ i, ++ j, ++ k) solve (i, "XOR", {j, k});
  for (int i = 130, j = 4;i <= 145; ++ i, ++ j) solve (i, "XOR", {j, 80});
  rightmove :: solveall ();
  leftmove :: solveall ();
  for (int i = 36, v0 = 60, v1 = 178, v2 = 82, v3 = 98, v4 = 114, v5 = 130, v6 = 759, v7 = 487;i <= 51; ++ i, ++ v0, ++ v1, ++ v2, ++ v3, ++ v4, ++ v5, ++ v6, ++ v7) {
    printf ("%d=OR(AND(%d,%d),AND(%d,%d),AND(%d,%d),AND(%d,%d),AND(%d,%d),AND(%d,%d),AND(%d,%d),AND(%d,%d));", i, op[0], v0, op[1], v1, op[2], v2, op[3], v3, op[4], v4, op[5], v5, op[6], v6, op[7], v7);
  }
  return 0;
}

标签:15,int,2023,Day2,++,solve,printf,type,CPU
From: https://www.cnblogs.com/RB16B/p/17972274

相关文章

  • centos7.9(大部分都可以)和redhat6.9 离线升级OpenSSH和openssl (2023年的版本)
     ssl 红色。测试centos7.6也可以升级注意事项!1、多开几个连接窗口(xshell),避免升级openssh失败无法再次连接终端,否则要跑机房了。2、可开启telnet服务、vnc服务、打快照。多几个“保命”的路数。一、centos7.9的信息[root@node2~]#opensslversionOpenSSL1.0.2k-fips......
  • MoeCTF 2023 Misc
    Misc入门指北下载得到附件,最后给了一段密文bW9lY3Rme2hAdjNfZnVuX0B0X20xNWNfIX0=文中提到有等于多半是base64加密base解密得到flagflag为:moectf{h@v3_fun_@t_m15c_!}打不开的图片1得到题目下载附件下载解压看到f1ag的文件,用010打开发现差一个文件头,补上jpg文件头FF......
  • 2023年快要结束了,今年哪些计算机书值得推荐?
    2023年推荐新书有如下几本:1、软件开发安全之道概念、设计与实施软件安全设计和实施,覆盖安全概念、设计与实践,让您轻松应对各种威胁与挑战,帮助读者培养安全意识,全面了解软件开发安全之道。2、C++Templates(第2版)中文版C++领域热门图书新升级,详细介绍模板技术,针对新标准更新内容,帮助......
  • 2023年总结,2024年展望
    前言转眼2023年就过去了。好像都没什么感觉,时间过得太快了,好像没留下多少痕迹。感觉疫情后整个人都没什么冲劲,加上大环境也不太好,什么职业规划、个人发展,好像都没什么人提了。不过虽然别人不提,现在这个环境下也没啥职业好规划的,先保住饭碗就好了,但是个人发展,还是要默默的、持......
  • NOIP 2023 游记
    NOIP2023游记Day-1上午头有点晕,上课都听不进去,心里有种不祥的预感。中午做好了最坏的准备,背上书包回家,果然发烧。休息了一下午。晚上看了看笔记和模板找状态,昏昏沉沉地睡了。Day0一大早来到ZZDX。放眼望去,一大片ZYZ的佬,顿时感觉自己被薄纱了。善良的zxc教练为我们......
  • 寒假学习day2
    下载 spark 安装包选择自己Hadoop对应的版本,不然会不兼容spark下载链接2.解压tar-zvxfspark.2.3 3.删除安装包,修改解压后的文件名字rm-rf安装包名mvspark-2.3.4-bin-hadoop2.7spark  4.配置文件进入到spark目录下cdconf (1).修改配置文件名字:mv......
  • 代码随想录 day22 二叉搜索树的最近公共祖先 二叉搜索树中的插入操作 删除二叉搜索树
    二叉搜索树的最近公共祖先这题跟之前的不一样可以利用二叉搜索树有序的特点有序就说明可以根据节点的值与pq的关系判断应该往左边搜索还是右边搜索这题显然是不需要遍历整棵树的所以是写的遍历边的写法遍历树需要用变量接受二叉搜索树中的插入操作一开始还以为要遍历......
  • 2023全球移动应用营销趋势洞察!Flat Ads白皮书正式发布
    连续3年,全球电商、社交、工具、娱乐等非游品类应用收入持续增长,吸引了众多开发者争先“出海”入局。近年来,国内泛娱乐社交、电商、教育等行业均迎来更为严格的政策监管,加上互联网流量趋向饱和,更为广阔的“海外市场”成为了开发者大展身手的新天地。而非游应用市场在热度加持......
  • 阿里云云原生专场精彩内容集锦丨2023 云原生产业大会
    2023云原生产业大会已于昨日闭幕,在阿里云云原生专场,来自阿里云的多位技术专家、中国信通院云大所副总工程师陈屹力及安永科技咨询合伙人王祺都带来了精彩的分享。关注公众号,后台回复:1201免费获得阿里云云原生专场 PPT合辑本次大会正值云原生技术规模化应用的关键时期,国内外云原......
  • 祝贺!我的同事丁宇获“2023 年度云原生产业领军人物”荣誉称号
    日前,在云原生产业大会上,中国信息通信研究院授予我的同事丁宇“2023年度云原生产业领军人物”荣誉称号,以表彰其在云原生产业上的突出贡献与创新引领。组委会在评语中写到:“他开创性的打造全链路压测技术,解决突变峰值下复杂系统的容量确定性和系统稳定性问题;带领团队攻坚技术获得国......