1 images 全局变量
不管是 bootz 还是 bootm 命令,启动kernel都会用到images全局变量。images 定义在文件 cmd/bootm.c:
include/image.h 中的定义了bootm_headers_t结构:该结构描述的是bootm启动时的头部信息。该结构又包含了系统镜像头部和系统镜像。
1.1 bootm头部结构
304 typedef struct bootm_headers {
305 /*
306 * Legacy os image header, if it is a multi component image
307 * then boot_get_ramdisk() and get_fdt() will attempt to get
308 * data from second and third component accordingly.
309 */
310 image_header_t *legacy_hdr_os; /* image header pointer */
311 image_header_t legacy_hdr_os_copy; /* header copy */
312 ulong legacy_hdr_valid;
313
......
333
334 #ifndef USE_HOSTCC
335 image_info_t os; /* OS 镜像信息 */
336 ulong ep; /* OS 入口点 */
337
338 ulong rd_start, rd_end; /* ramdisk 开始和结束位置 */
339
340 char *ft_addr; /* 设备树地址 */
341 ulong ft_len; /* 设备树长度 */
342
343 ulong initrd_start; /* initrd 开始位置 */
344 ulong initrd_end; /* initrd 结束位置 */
345 ulong cmdline_start; /* cmdline 开始位置 */
346 ulong cmdline_end; /* cmdline 结束位置 */
347 bd_t *kbd;
348 #endif
349
350 int verify; /* getenv("verify")[0] != 'n' */
351
352 #define BOOTM_STATE_START (0x00000001)
353 #define BOOTM_STATE_FINDOS (0x00000002)
354 #define BOOTM_STATE_FINDOTHER (0x00000004)
355 #define BOOTM_STATE_LOADOS (0x00000008)
356 #define BOOTM_STATE_RAMDISK (0x00000010)
357 #define BOOTM_STATE_FDT (0x00000020)
358 #define BOOTM_STATE_OS_CMDLINE (0x00000040)
359 #define BOOTM_STATE_OS_BD_T (0x00000080)
360 #define BOOTM_STATE_OS_PREP (0x00000100)
361 #define BOOTM_STATE_OS_FAKE_GO (0x00000200)/*'Almost' run the OS*/
362 #define BOOTM_STATE_OS_GO (0x00000400)
363 int state;
364
365 #ifdef CONFIG_LMB
366 struct lmb lmb; /* 内存管理相关,不深入研究 */
367 #endif
368 } bootm_headers_t;
第 352~362 行这 11 个宏定义表示 BOOT 的不同阶段。
1.1.1 系统镜像头部结构
先来看下image_header_t结构,也就是系统镜像头部信息:
typedef struct image_header {
__be32 ih_magic; /* Image Header Magic Number */
__be32 ih_hcrc; /* Image Header CRC Checksum */
__be32 ih_time; /* Image Creation Timestamp */
__be32 ih_size; /* Image Data Size */
__be32 ih_load; /* Data Load Address */
__be32 ih_ep; /* Entry Point Address */
__be32 ih_dcrc; /* Image Data CRC Checksum */
uint8_t ih_os; /* Operating System */
uint8_t ih_arch; /* CPU architecture */
uint8_t ih_type; /* Image Type */
uint8_t ih_comp; /* Compression Type */
uint8_t ih_name[IH_NMLEN]; /* Image Name */
} image_header_t;
1.1.2 系统镜像结构
再来看下image_info_t结构,也就是系统镜像信息结构:
typedef struct image_info {
ulong start, end; /* start/end of blob */
ulong image_start, image_len; /* start of image within blob, len of image */
ulong load; /* load addr for the image */
uint8_t comp, type, os; /* compression, type of image, os type */
uint8_t arch; /* CPU architecture */
} image_info_t;
2 do_bootz 函数
do_bootz 函数定义在cmd/bootm.c:
先执行bootz_start。先执行BOOTM_STATE_START 阶段。
第 638 行,设置 images.os.os 为 IH_OS_LINUX,也就是设置系统镜像为 Linux,表示我们要启动的是 Linux 系统!后面会用到 images.os.os 来挑选具体的启动函数。
第 639 行,调用函数 do_bootm_states 来执行不同的 BOOT 阶段,这里要执行的 BOOT 阶段有:BOOTM_STATE_OS_PREP 、BOOTM_STATE_OS_FAKE_GO 和BOOTM_STATE_OS_GO。
2.1 bootz_start
- 调用函数 do_bootm_states,执行 BOOTM_STATE_START 阶段。
- 593 行,设置 images 的 ep,也就是系统镜像的入口点,使用 bootz 命令启动系统的时候就会设置系统在 DRAM 中的存储位置,这个存储位置就是系统镜像的入口点,因此 images->ep=0X80800000。
- 调用 bootz_setup 函数,此函数会判断当前的系统镜像文件是否为 Linux 的镜像文件,并且会打印出镜像相关信息,bootz_setup 函数稍后会讲解、
- 调用 bootm_find_images 查找 ramdisk 和设备树(dtb)文件,但是我们没有用到 ramdisk,因此此函数在这里仅仅用于查找设备树(dtb)文件,此函数稍后也会讲解。
2.1.1 bootm_start
执行 BOOTM_STATE_START 阶段时,执行bootm_start:
初始化verfify 成员, 设置images状态为 BOOTM_STATE_START。
2.1.2 bootz_setup
定义在文件 arch/arm/lib/bootm.c:
- 宏 LINUX_ARM_ZIMAGE_MAGIC 就是 ARM Linux 系统魔术数。
- 从传递进来的参数 image(也就是系统镜像首地址)中获取 zimage 头。
- 判断 image 是否为 ARM 的 Linux 系统镜像,如果不是的话就直接返回,并且打印出“Bad Linux ARM zImage magic!”,比如我们输入一个错误的启动命令:
bootz 80000000 – 900000000
因为我们并没有在 0X80000000 处存放 Linux 镜像文件(zImage),因此上面的命令肯定会执行出错如下:
- 初始化函数 bootz_setup 的参数 start 和 end。
- 打印启动信息,如果 Linux 系统镜像正常的话打印如下:
2.1.3 bootm_find_images
定义在文件 common/bootm.c:
- 查找 ramdisk,但是我们没有用到 ramdisk,因此这部分代码不用管。
- 查找设备树(dtb)文件,找到以后就将设备树的起始地址和长度分别写到images 的 ft_addr 和 ft_len 成员变量中。我们使用 bootz 启动 Linux 的时候已经指明了设备树在DRAM 中的存储地址,因此 images.ft_addr=0X83000000,长度根据具体的设备树文件而定,比如我现在使用的设备树文件长度为 0X8C81,因此 images.ft_len=0X8C81。
2.2 do_bootm_states
前面将state先处理了 BOOTM_STATE_START 阶段,接下来处里下面三个状态:
BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO
2.2.1 bootm_os_get_boot_func
进入第658行,通过bootm_os_get_boot_func来查找系统启动函数。由于前面提到images->os.os 就是系统类型设置 为 IH_OS_LINUX,根据这个os类型来选择对应的启动函数名为do_bootm_linux:
2.2.2 boot_pre_linux
第 676-677 行,处理 BOOTM_STATE_OS_PREP 状态,调用函数 do_bootm_linux,do_bootm_linux调用 boot_prep_linux 来完成具体的处理过程。boot_prep_linux 主要用于处理环境变量bootargs,bootargs 保存着传递给 Linux kernel 的参数:
设备树的chosen节点下存放了子节点bootargs,bootargs子节点存放bootargs环境变量
2.2.3 boot_jump_linux
第699行,调用函数 boot_selected_os 启动 Linux 内核,此函数第 4 个参数为 Linux 系统镜像头,第 5 个参数就是 Linux 系统启动函数 do_bootm_linux。boot_selected_os 函数定义在文件common/bootm_os.c如下:
最终调用 boot_selected_os->boot_fn(即do_bootm_linux)->boot_jump_linux来启动 Linux 内核:
boot_jump_linux:
-
我们的板子IMX6ULL是armv7 32位架构,因此从else开始,第293 行,变量 machid 保存机器 ID,如果不使用设备树的话这个机器 ID 会被传递给 Linux内核,Linux 内核会在自己的机器 ID 列表里面查找是否存在与 uboot 传递进来的 machid 匹配的项目,如果存在就说明 Linux 内核支持这个机器,那么 Linux 就会启动!如果使用设备树的话这个 machid 就无效了,设备树存有一个“兼容性”这个属性,Linux 内核会比较“兼容性”属性的值(字符串)来查看是否支持这个机器。
-
第 295 行,函数 kernel_entry,看名字“内核_进入”,说明此函数是进入 Linux 内核的,也就是最终的大boss!此函数有三个参数:zero,arch,params,第一个参数 zero 同样为 0;第二个参数为机器 ID;第三个参数 ATAGS 或者设备树(DTB)首地址,ATAGS 是传统的方法,用于传递一些命令行信息啥的,如果使用设备树的话就要传递设备树(DTB)。
-
第 299 行,获取 kernel_entry 函数,函数 kernel_entry 并不是 uboot 定义的,而是 Linux 内核定义的,Linux 内核镜像文件的第一行代码就是函数 kernel_entry,而 images->ep 保存着 Linux内核镜像的起始地址,起始地址保存的正是 Linux 内核第一行代码!
-
第 313 行,调用函数 announce_and_cleanup 来打印一些信息并做一些清理工作:
因此每次启动 Linux 之前输出“Starting kernel ...”信息如下:
-
继续回到函数 boot_jump_linux,第 315~318 行是设置寄存器 r2 的值?为什么要设置 r2 的值呢?Linux 内核一开始是汇编代码,因此函数 kernel_entry 就是个汇编函数。向汇编函数传递参数要使用 r0、r1 和 r2(参数数量不超过 3 个的时候),所以 r2 寄存器就是函数 kernel_entry 的第三个参数。
-
第 316 行,如果使用设备树的话,r2 应该是设备树的起始地址,而设备树地址保存在 images的 ftd_addr 成员变量中。
-
第 317 行,如果不使用设备树的话,r2 应该是 uboot 传递给 Linux 的参数起始地址,也就是环境变量 bootargs 的值,
-
最后调用调用 kernel_entry 函数进入 Linux 内核,至此Uboot的整个运行流程结束,uboot 的使命也就完成了。