首页 > 其他分享 >布隆过滤器详解——转载自IT老暖男

布隆过滤器详解——转载自IT老暖男

时间:2024-01-14 23:14:01浏览次数:45  
标签:hash 二进制 误判 布隆 详解 fpp 老暖 过滤器

前言

我们之前讲了Redis的缓存雪崩、穿透、击穿。在文章里我们说了解决缓存穿透的办法之一,就是布隆过滤器,但是上次并没有讲如何使用布隆过滤器。

作为暖男的老哥,给你们补上,请叫我IT老暖男

什么是布隆过滤器

布隆过滤器(Bloom Filter),是1970年,由一个叫布隆的小伙子提出的,距今已经五十年了,和老哥一样老。

它实际上是一个很长的二进制向量和一系列随机映射函数,二进制大家应该都清楚,存储的数据不是0就是1,默认是0。

主要用于判断一个元素是否在一个集合中,0代表不存在某个数据,1代表存在某个数据。

懂了吗?作为暖男的老哥在给你们画张图来帮助理解:

布隆过滤器用途

  • 解决Redis缓存穿透(今天重点讲解)
  • 在爬虫时,对爬虫网址进行过滤,已经存在布隆中的网址,不在爬取。
  • 垃圾邮件过滤,对每一个发送邮件的地址进行判断是否在布隆的黑名单中,如果在就判断为垃圾邮件。

以上只是简单的用途举例,大家可以举一反三,灵活运用在工作中。

布隆过滤器原理

存入过程

布隆过滤器上面说了,就是一个二进制数据的集合。当一个数据加入这个集合时,经历如下洗礼(这里有缺点,下面会讲):

  • 通过K个哈希函数计算该数据,返回K个计算出的hash值
  • 这些K个hash值映射到对应的K个二进制的数组下标
  • 将K个下标对应的二进制数据改成1。

例如,第一个哈希函数返回x,第二个第三个哈希函数返回y与z,那么:X、Y、Z对应的二进制改成1。

如图所示:

查询过程

布隆过滤器主要作用就是查询一个数据,在不在这个二进制的集合中,查询过程如下:

  • 通过K个哈希函数计算该数据,对应计算出的K个hash值
  • 通过hash值找到对应的二进制的数组下标
  • 判断:如果存在一处位置的二进制数据是0,那么该数据不存在。如果都是1,该数据存在集合中。(这里有缺点,下面会讲)

删除过程

一般不能删除布隆过滤器里的数据,这是一个缺点之一,我们下面会分析。

布隆过滤器的优缺点

优点

  • 由于存储的是二进制数据,所以占用的空间很小
  • 它的插入和查询速度是非常快的,时间复杂度是O(K),可以联想一下HashMap的过程
  • 保密性很好,因为本身不存储任何原始数据,只有二进制数据

缺点

这就要回到我们上面所说的那些缺点了。

添加数据是通过计算数据的hash值,那么很有可能存在这种情况:两个不同的数据计算得到相同的hash值。

例如图中的“你好”和“hello”,假如最终算出hash值相同,那么他们会将同一个下标的二进制数据改为1。

这个时候,你就不知道下标为2的二进制,到底是代表“你好”还是“hello”。

由此得出如下缺点:

一、存在误判

假如上面的图没有存"hello",只存了"你好",那么用"hello"来查询的时候,会判断"hello"存在集合中。

因为“你好”和“hello”的hash值是相同的,通过相同的hash值,找到的二进制数据也是一样的,都是1。

二、删除困难

到这里我不说大家应该也明白为什么吧,作为你们的暖男老哥,还是讲一下吧。

还是用上面的举例,因为“你好”和“hello”的hash值相同,对应的数组下标也是一样的。

这时候老哥想去删除“你好”,将下标为2里的二进制数据,由1改成了0。

那么我们是不是连“hello”都一起删了呀。(0代表有这个数据,1代表没有这个数据)

到这里是不是对布隆过滤器已经明白了,都说了我是暖男。

实现布隆过滤器

有很多种实现方式,其中一种就是Guava提供的实现方式。

一、引入Guava pom配置

<dependency>
  <groupId>com.google.guava</groupId>
  <artifactId>guava</artifactId>
  <version>29.0-jre</version>
</dependency>

二、代码实现

这里我们顺便测一下它的误判率。

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

public class BloomFilterCase {

  /**
   * 预计要插入多少数据
   */
  private static int size = 1000000;

  /**
   * 期望的误判率
   */
  private static double fpp = 0.01;

  /**
   * 布隆过滤器
   */
  private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, fpp);


  public static void main(String[] args) {
    // 插入10万样本数据
    for (int i = 0; i < size; i++) {
      bloomFilter.put(i);
    }

    // 用另外十万测试数据,测试误判率
    int count = 0;
    for (int i = size; i < size + 100000; i++) {
      if (bloomFilter.mightContain(i)) {
        count++;
        System.out.println(i + "误判了");
      }
    }
    System.out.println("总共的误判数:" + count);
  }
}

运行结果:

10万数据里有947个误判,约等于0.01%,也就是我们代码里设置的误判率:fpp = 0.01。

深入分析代码

核心BloomFilter.create方法

@VisibleForTesting
  static <T> BloomFilter<T> create(
      Funnel<? super T> funnel, long expectedInsertions, double fpp, Strategy strategy) {
    。。。。
}

这里有四个参数:

  • funnel:数据类型(一般是调用Funnels工具类中的)
  • expectedInsertions:期望插入的值的个数
  • fpp:误判率(默认值为0.03)
  • strategy:哈希算法

我们重点讲一下fpp参数

fpp误判率

情景一:fpp = 0.01
  • 误判个数:947
  • 占内存大小:9585058位数
情景二:fpp = 0.03(默认参数)
  • 误判个数:3033
  • 占内存大小:7298440位数
情景总结
  • 误判率可以通过fpp参数进行调节
  • fpp越小,需要的内存空间就越大:0.01需要900多万位数,0.03需要700多万位数。
  • fpp越小,集合添加数据时,就需要更多的hash函数运算更多的hash值,去存储到对应的数组下标里。(忘了去看上面的布隆过滤存入数据的过程)

上面的numBits,表示存一百万个int类型数字,需要的位数为7298440,700多万位。理论上存一百万个数,一个int是4字节32位,需要481000000=3200万位。如果使用HashMap去存,按HashMap50%的存储效率,需要6400万位。可以看出BloomFilter的存储空间很小,只有HashMap的1/10左右

上面的numHashFunctions表示需要几个hash函数运算,去映射不同的下标存这些数字是否存在(0 or 1)。

解决Redis缓存穿透

上面使用Guava实现的布隆过滤器是把数据放在了本地内存中。分布式的场景中就不合适了,无法共享内存。

我们还可以用Redis来实现布隆过滤器,这里使用Redis封装好的客户端工具Redisson。

其底层是使用数据结构bitMap,大家就把它理解成上面说的二进制结构,由于篇幅原因,bitmap不在这篇文章里讲,我们之后写一篇文章介绍。

代码实现

pom配置:

<dependency>
  <groupId>org.redisson</groupId>
  <artifactId>redisson-spring-boot-starter</artifactId>
  <version>3.13.4</version>
</dependency>

java代码:

public class RedissonBloomFilter {

  public static void main(String[] args) {
    Config config = new Config();
    config.useSingleServer().setAddress("redis://127.0.0.1:6379");
    config.useSingleServer().setPassword("1234");
    //构造Redisson
    RedissonClient redisson = Redisson.create(config);

    RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
    //初始化布隆过滤器:预计元素为100000000L,误差率为3%
    bloomFilter.tryInit(100000000L,0.03);
    //将号码10086插入到布隆过滤器中
    bloomFilter.add("10086");

    //判断下面号码是否在布隆过滤器中
    //输出false
    System.out.println(bloomFilter.contains("123456"));
    //输出true
    System.out.println(bloomFilter.contains("10086"));
  }
}

由于Guava那个版本,我们已经很详细的讲了布隆过滤器的那些参数,这里就不重复赘述了。

标签:hash,二进制,误判,布隆,详解,fpp,老暖,过滤器
From: https://www.cnblogs.com/-hz01/p/17964408

相关文章

  • 【CV】图像分割详解!
    图像分割是计算机视觉研究中的一个经典难题,已经成为图像理解领域关注的一个热点,图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交......
  • 网络地图服务(WMS)详解
    目录1.概述2.GetCapabilities3.GetMap4.GetFeatureInfo阅读本文之前可参考前文:《地图服务器GeoServer的安装与配置》与《GeoServer发布地图服务(WMS、WFS)》。1.概述经过前文的介绍,相信我们对WMS/WFS服务已经有了一个非常直观的认识,最起码我们知道了地图服务的数据从何而来,又是......
  • 【愚公系列】2024年01月 WPF控件专题 ProgressBar控件详解
    ......
  • NGINX 路由配置与参数详解(https配置、跨域配置、socket配置)
    目录一、概述二、https配置1)获取SSL证书2)安装SSL证书3)Nginx配置修改4)重新加载Nginx配置三、nginx跨域配置四、nginxsocket配置五、NGINX路由配置1)基本的URI匹配2)nginx中斜杠(/)1、location以斜杠结尾,proxy_pass不以斜杠结尾2、location不以斜杠结尾,proxy_pass......
  • 详解Spring事件监听
    第1章:引言大家好,我是小黑。今天咱们来聊下Spring框架中的事件监听。在Java里,事件监听听起来好像很高大上,但其实它就像是我们日常生活中的快递通知:当有快递到了,你会收到一个通知。同样,在程序中,当某些事情发生时(比如用户点击了按钮),系统会发送一个事件,然后监听这个事件的处理器就会......
  • Linux通配符的使用详解
    一、简介一般生产环境的服务器默认都是不安装图形化界面的,习惯了在命令行环境下工作是,大家会发现:命令行操作效率比图形化界面效率高很多。由命令行环境中,我们不能直观地看到一些文件或目录的名称及其他一些信息,这时候通配符就派上用场啦!当不知道真正字符或懒得输入完整文件或目录名......
  • Linux中find命令的使用详解(上)
    find命令是各种Linux发现版中比较重要的、常用的一个命令,该命令功能强大,熟练掌握了这个命令的使用,对平时的系统运维、管理工作会起到事半功倍的效果。一.获取帮助信息[root@root@GeekDevOps-find~]#find--help[root@root@GeekDevOps-find~]#manfind大家会发现帮助信息很多,但......
  • 详解Java之Spring框架中事务管理的艺术
    第1章:引言大家好,我是小黑,咱们今天聊聊Spring框架中的事务管理。不管是开发小型应用还是大型企业级应用,事务管理都是个不可避免的话题。那么,为什么事务管理这么重要呢?假设在银行系统中转账时,钱从A账户扣了,但没到B账户,这种情况就是事务管理处理不当的后果。显然,我们需要一种机制来......
  • $.ajax()方法详解
    1.url要求为String类型的参数,(默认为当前页地址)发送请求的地址。2.type要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和delete也可以使用,但仅部分浏览器支持。3.timeout要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方......
  • React 详解(1)
    React简介React基础JSX的本质JSX并不是标准的JS语法,它是JS的语法扩展,浏览器本身不能识别,需要通过解析工具做解析之后才能在浏览器中运行。这里主要依靠BABEL解析工具来解析,下面简单的介绍一下这个解析工具(http://babeljs.io):JSX中使用JS表达式在JSX中可以通过大括号语法......