一 准备知识
堆的结构可以分为大根堆和小根堆,是一个完全二叉树,而堆排序是根据堆的这种数据结构设计的一种排序,下面先来看看什么是大根堆和小根堆
1.1 大根堆和小根堆
性质:每个结点的值都大于其左孩子和右孩子结点的值,称之为大根堆;每个结点的值都小于其左孩子和右孩子结点的值,称之为小根堆。如下图
我们对上面的图中每个数都进行了标记,上面的结构映射成数组就变成了下面这个样子
还有一个基本概念:查找数组中某个数的父结点和左右孩子结点,比如已知索引为i的数,那么
1.父结点索引:(i-1)/2(这里计算机中的除以2,省略掉小数)
2.左孩子索引:2*i+1
3.右孩子索引:2*i+2
所以上面两个数组可以脑补成堆结构,因为他们满足堆的定义性质:
大根堆:arr(i)>arr(2*i+1) && arr(i)>arr(2*i+2)
小根堆:arr(i)<arr(2*i+1) && arr(i)<arr(2*i+2)
二 堆排序基本步骤
基本思想:
1.首先将待排序的数组构造成一个大根堆,此时,整个数组的最大值就是堆结构的顶端
2.将顶端的数与末尾的数交换,此时,末尾的数为最大值,剩余待排序数组个数为n-1
3.将剩余的n-1个数再构造成大根堆,再将顶端数与n-1位置的数交换,如此反复执行,便能得到有序数组
2.1 构造堆
将无序数组构造成一个大根堆(升序用大根堆,降序就用小根堆)
假设存在以下数组
主要思路:第一次保证0~0位置大根堆结构,第二次保证0~1位置大根堆结构,第三次保证0~2位置大根堆结构...直到保证0~n-1位置大根堆结构(每次新插入的数据都与其父结点进行比较,如果插入的数比父结点大,则与父结点交换,否则一直向上交换,直到小于等于父结点,或者来到了顶端)
插入6的时候,6大于他的父结点3,即arr(1)>arr(0),则交换;此时,保证了0~1位置是大根堆结构,如下图:
待交换的数为蓝色,交换后的数为绿色
插入8的时候,8大于其父结点6,即arr(2)>arr(0),则交换;此时,保证了0~2位置是大根堆结构,如下图
插入5的时候,5大于其父结点3,则交换,交换之后,5又发现比8小,所以不交换;此时,保证了0~3位置大根堆结构,如下图
插入7的时候,7大于其父结点5,则交换,交换之后,7又发现比8小,所以不交换;此时整个数组已经是大根堆结构
2.2 固定最大值再构造堆
此时,我们已经得到一个大根堆,下面将顶端的数与最后一位数交换,然后将剩余的数再构造成一个大根堆
黑色的为固定好的数字,不再参与排序
此时最大数8已经来到末尾,则固定不动,后面只需要对顶端的数据进行操作即可,拿顶端的数与其左右孩子较大的数进行比较,如果顶端的数大于其左右孩子较大的数,则停止,如果顶端的数小于其左右孩子较大的数,则交换,然后继续与下面的孩子进行比较
下图中,5的左右孩子中,左孩子7比右孩子6大,则5与7进行比较,发现5<7,则交换;交换后,发现5已经大于他的左孩子,说明剩余的数已经构成大根堆,后面就是重复固定最大值,然后构造大根堆
如下图:顶端数7与末尾数3进行交换,固定好7,
剩余的数开始构造大根堆 ,然后顶端数与末尾数交换,固定最大值再构造大根堆,重复执行上面的操作,最终会得到有序数组
三 总结
到这里,大家应该对堆排序都有了自己的见解,我们对上面的流程总结下:
1、首先将无需数组构造成一个大根堆(新插入的数据与其父结点比较)
2、固定一个最大值,将剩余的数重新构造成一个大根堆,重复这样的过程
四 代码
代码中主要两个方法:
1、将待排序数组构造成一个大根堆(元素上升)
2、固定一个最大值,将剩余的数再构造成一个大根堆(元素下降)
void swap(int array[], int x, int y)
{
int key = array[x];
array[x] = array[y];
array[y] = key;
}
// 从大到小排序(小顶堆)
// void Down(int array[], int i, int n) {
// int child = 2 * i + 1;
// int key = array[i];
// while (child < n) {
// if (child + 1 < n && array[child] > array[child + 1]) {
// child++;
// }
// if (key > array[child]) {
// swap(array, i, child);
// i = child;
// } else {
// break;
// }
// child = child * 2 + 1;
// }
// }
// 从小到大排序(大顶堆)
void Down(int array[], int i, int n) // i父节点下标,n array长度
{
int parent = i; // 父节点下标
int child = 2 * i + 1; // 子节点下标
while (child < n) {
if (child + 1 < n && array[child] < array[child + 1]) { // 判断子节点那个大,大的与父节点比较
child++;
}
if (array[parent] < array[child]) { // 判断父节点是否小于子节点
swap(array, parent, child); // 交换父节点和子节点
parent = child; // 子节点下标 赋给 父节点下标
}
child = child * 2 + 1; // 换行,比较下面的父节点和子节点
}
}
void GxyHeapSort(int array[],int size)
{
int i;
for( i = size/2 -1;i >= 0;i--){ //倒数第二排开始,创建大顶堆,必须从上往下比较
Down(array, i, size);
}
for(i = size - 1;i>0;i--){
swap(array,0,i); // 交换顶点和第 i 个数据
// 因为只有array[0]改变,其它都符合大顶堆的定义,所以可以从上往下重新建立
Down(array, 0, i); // 重新建立大顶堆
}
}
标签:大根堆,结点,int,交换,堆排序,child,array From: https://www.cnblogs.com/ink-white/p/16778442.html