首页 > 其他分享 >微服务的相关概念

微服务的相关概念

时间:2023-12-28 16:15:12浏览次数:30  
标签:负载 服务 业务 概念 RPC 拆分 相关 客户端

https://blog.csdn.net/sxycylq/article/details/128332779

微服务概念
微服务的概念最早是在2014年由Martin Fowler和James Lewis共同提出,他们定义了微服务是由单一应用程序构成的小服务,拥有自己的进程与轻量化处理,服务依业务功能设计,以全自动的方式部署,与其他服务使用HTTP API通讯。同时,服务会使用最小规模的集中管理 (例如Docker)技术,服务可以用不同的编程语言与数据库等。

微服务是一种软件架构风格,是以专注于单一责任与功能的小型功能区块为基础,利用模块化的方式组合出复杂的大型应用程序,各功能区块使用与语言无关的API集相互通信。

单体应用
早期的互联网公司应用技术栈主要分为LAMP(Linux+Apache+MySQL+PHP)和MVC(Spring+iBaits/Hibernate+Tomcat)两大流派,
以MVC架构为例,业务通常是通过部署一个WAR包到Tomcat中,然后启动Tomcat,监听某个端口即可对外提供服务

优点:
学习成本低,开发上手快,测试、部署、运维也比较方便,甚至一个人就可以完成一个网站的开发与部署。

缺点:
随着业务规模的不断扩大,团队开发人员的不断扩张,单体应用架构就会开始出现问题
部署效率低下,团队协作开发成本高,系统高可用性差,线上发布变慢
解决上诉问题提出微服务的思想

微服务架构的重要特征:

整个应用程序被拆分成相互独立但包含多个内部模块的子进程。

与模块化的单体应用(Modular Monoliths)或 SOA 相反,微服务应用程序根据业务范围或领域垂直拆分。

微服务边界是外部的,微服务之间通过网络调用(RPC 或消息)相互通信。

微服务是独立的进程,它们可以独立部署。

它们以轻量级的方式进行通信,不需要任何智能通信通道。

微服务架构的优点:

更好的开发规模。

更快的开发速度。

支持迭代开发或现代化增量开发。

充分利用现代软件开发生态系统的优势(云、容器、 DevOps、Serverless)。

支持水平缩放和细粒度缩放。

小体量,较低了开发人员的认知复杂性。

微服务架构的缺点:

更高数量级的活动组件(服务、数据库、进程、容器、框架)。

复杂性从代码转移到基础设施。

RPC 调用和网络通信的大量增加。

整个系统的安全性管理更具有挑战性。

整个系统的设计变得更加困难。

引入了分布式系统的复杂性。

何时使用微服务架构:

大规模 Web 应用开发。

跨团队企业级应用协作开发。

长期收益优先于短期收益。

团队拥有能够设计微服务架构的软件架构师或高级工程师。

服务化
把传统的单机应用中通过JAR包依赖产生的本地方法调用,改造成通过RPC接口产生的远程方法调用。在编写业务代码时,对于一些通用的业务逻辑,尽力把它抽象并独立成为专门的模块
利用RPC接口的形式对外提供服务
通过服务化,可以解决单体应用膨胀,团队开发耦合度高、协作效率低下等问题

微服务
微服务相较于服务化出现了改变

服务拆分粒度更细
服务独立部署
服务独立维护
服务治理能力要求高
总结:
微服务架构是将复杂臃肿的单体应用进行细粒度的服务化拆分,每个拆分出来的服务各自独立打包部署,并交由小团队进行开发和运维,从而极大地提高了应用交付的效率,并被各大互联网公司所普遍采用。
什么样的服务才算是微服务?
单一职责:一个微服务应该都是单一职责的,一个微服务解决一个业务问题
面向服务:将自己的业务能力封装并对外提供服务,继承面向服务的核心思想,一个微服务本身也可能使用到其他微服务的能力。

微服务面临的问题
Q1:服务发现问题,一个微服务如何发现其他微服务?
每个微服务里面配置其他微服务的地址,当微服务数量众多时,使用:服务注册中心,所有服务都注册到服务注册中心,同时从服务注册中心中获取当前可用的服务清单。

Q2: 服务配置管理问题:服务数量超过一定程度后,需要在每个服务里面分别维护每一个服务的配置文件。
使用服务配置中心

Q3: 当客户端或外部应用调用服务的时候应该怎么处理?不同服务具有不同的服务地址,服务验证的相关工作应该在哪儿完成?
使用服务网关提供统一的服务入口,最终形成典型的微服务架构

微服务涉及的领域还包括:
通过熔断、限流等机制保证高可用
微服务之间调用的负载均衡
分布式事务
服务调用链跟踪

微服务业务拆分

面向微服务的业务拆分:
 单体到微服务的拆分:从非核心服务到核心业务完成拆分,基础设施按照优先级进行落地
 粗粒度拆分微服务:按照质量(性能、复杂度、可用性)、交付频率拆分,重用现在的基础设施
 服务拆分的粒度:能够维持2-4个人维护一个微服务最佳

 

网关
作为微服务的统一吐口,肩负着整个微服务的流量接入、管理、聚合、安全等,从服务分层的角度可以分为接入网关和业务网关

接入网关
接入网关提供最基础的流量接入和安全防护能力,侧重于全局,与业务无关
 域名&DNS
 负载均衡(LB):主要负责请求的转发代理,按机器负载进行分配流量,对外提供VIP,负载可以宽泛的理解为系统的压力,可以用CPU负载来衡量,也可用连接数、I/O使用率、网卡吞吐量进行衡量
 网关同时负责服务整体的安全防护,SSL,IPV6

业务网关
业务网关作为业务最上层入口,一般承担起业务接入或BFF(Backend for Frontends)工作,
 鉴权:验证用户、请求
 限流:做流量控制,防止对系统产生过大压力从而影响整个服务
 熔断:作为服务断路器,可防止应用程序重复尝试执行可能失败的操作,对整体链路起到保护作用。断路器内部会推断“打开”,“半打开”,“关闭”三种状态,来决定对请求的状态,同时结合降级策略提升服务的鲁棒性
 降级:当限流、熔断、超时或系统故障发生时,通过丢弃一部分请求来减少系统的工作量,本质上是提供一种有损服务
 重试:出现连接失误/超时-网络抖动,使用重试提高请求的最终成功率
 插件化:为了集成技术人员编写的一些业务相关的通用能力
 BFF:按照业务逻辑,以串行,并行和分支等结构编排多个服务API,为服务提供聚合、适配、裁剪功能。核心是API的动态编排用以满足日益增长的业务逻辑,降低前端与微服务之间的对接成本。

协议
微服务架构之间的服务间通信方式主要分为HTTP REST和RPC
 HTTP REST,更确切的讲师指的是API设计风格,而不是协议标准
 RPC,描述了客户端与服务端之间的点对点调用流程,包括RPC消息协议、序列化、通信等。可基于TCP,也可基于HTTP。目前RPC框架大致包括,偏向于服务治理(Dubbo、Mottan),另一种偏向于跨语言调用(Thrift/GRPC)

RPC相比HTTP REST的优点
 更清晰的API定义
 更好的传输效率
 更合适的容错机制

服务注册
服务注册主要将微服务的后端机器IP、端口、地域等信息注册起来,并结合一定的发现机制使客户端的请求能够直连具体的后端机器。根据实现方式可分为服务端模式与客户端模式

服务端模式:传统模式,借助负载均衡器和DNS进行实现,负载均衡器负责健康检查,负载均衡策略,DNS负责实现访问域名到负载均衡器IP/VIP的映射关系,通过直接暴露域名和端口的方式提供客户端进行访问
服务端模式注册与发现都由服务端完成,这样可以使客户端专注在自身的业务实现,但是由于以来负载均衡器,使其成为系统瓶颈,可用性的高低直接决定了服务质量。

客户端模式:借助注册中心实现,注册中心负责服务的注册与健康检查,客户端通过监听配置变更的方式及时把配置中心维护的配置同步到本地,通过客户端负载均衡策略直接向后端机器发起请求
客户端模式注册与发现由配置中心和客户端共同完成,客户端先通过服务发现获取到真实的后端节点,再与后端节点直接通信,通过去中心化的方式,可以避免出现双向链接等proxy模式的性能问题,但可靠性容易出现在配置中心上,并且客户端的也需要一定的接入成本。

配置中心
配置中心除了基础的配置数据,一些情况下还要开放给非开发人员使用,完善的控制台,权限管理,dashbord支持,也非常重要

可观测性
可观测性围绕着Tracing(链路追踪)、Logging(日志)和Metrics(度量)展开

消息队列
消息队列是一种进程间通信或同一进程的不同线程之间的通信方式,软件的贮列用来处理一系列的输入,通常是来自用户。消息队列提供异步的通信协议,每一个贮列中的记录包括详细说明的数据,包含发生的时间,输入设备的种类,以及待定的输入参数,也就是说:消息的发送者和接受者不需要同时与消息队列进行交互。消息会保存在队列中,直到接收者取回它。

消息队列的选型主要侧重于:
 HA: 自身的高可用性保障,避免消息队列的引入而影响整体服务的可行性
 高吞吐:面对海量数据写入能否保持一个相对稳定、高效的数据处理能力
 功能丰富性:是否支持延迟消息、事务信息、死信队列、优先级队列等
 消息广播:是否支持将消息广播给消费者或则一组消费者
 消息堆积能力:在数据量过大时,是否允许一定消息堆积到broker
 数据持久性:数据持久化策略的采用,也决定着数据在宕机恢复后是否会丢失数据
 重复消费:是否支持ack机制,在消费者未正确处理消息时,支持重新消费
 消息顺序性:针对顺序消费的场景保证数据按写入时间的顺序性

常见的主要有:Redis、Rabbmq/Rocketmq、kafka、Plusar

标签:负载,服务,业务,概念,RPC,拆分,相关,客户端
From: https://www.cnblogs.com/beatle-go/p/17932892.html

相关文章

  • ITSM服务管理工具有什么用?
    随着企业数字化转型的推进,IT服务管理(ITSM)的重要性日益突显。为了更好地规范、优化和提升企业的IT服务质量,许多企业开始采用ITSM服务管理工具。本文将探讨ITSM服务管理工具的重要性以及为什么企业需要它们。  首先,ITSM服务管理工具能够帮助企业实现IT服务的自动化和集中化管理......
  • 安全可信|这朵政务云通过中央网信办云计算服务安全评估增强级认证!
    近日,新疆电信省级政务云平台正式通过中央网信办云计算服务安全评估增强级认证,这标志着天翼云政务云的安全可控水平已经获得权威认可,能够满足政务应用上云的高安全要求。在2023年国家网络安全宣传周云计算服务安全分论坛上,天翼云携手业内头部云商,签署《云计算服务安全自律公约》,主动......
  • 云服务器接入高防IP无法访问的原因以及处理方式
    云服务器,也称为ElasticComputeService(ECS),是一种简单高效、安全可靠、处理能力可弹性伸缩的计算服务。它是一种虚拟化的服务器,运行公共的操作系统和软件,并允许用户通过网络进行访问。用户无需提前购买硬件,即可迅速创建或释放任意多台云服务器。云服务器帮助用户快速构建更稳定、安......
  • 高性能与成本效益兼备:Flomesh 服务网格 FSM 数据平面性能基准测试
    FlomeshServiceMesh(FSM)旨在提供服务网格功能、注重高性能和低资源消耗。这使得资源受限的边缘环境能够利用类似云的服务网格功能。在本次测试中,我们对FSM(v1.1.4)和Istio(v1.19.3)进行了基准测试。主要关注在使用两种不同网格时的服务延迟分布,以及数据平面的资源开销。FSM使用P......
  • Linux 服务器 Java 进程消失问题怎么解决
    当您在使用NginxWebUI进行反向代理时遇到504错误,这通常是由于Nginx无法在合理的时间内完成请求处理。504错误是Nginx的通用错误,表示"网关超时"。以下是可能导致此问题的原因以及相应的解决方案:1.后端服务器问题原因:后端服务器可能由于各种原因无法及时响应。解决方案:检查后端服务......
  • 【北亚服务器数据恢复】服务器RAIDZ多块磁盘离线导致RAIDZ崩溃崩溃导致ZPOOL下线的数
    服务器数据恢复环境:服务器中有32块硬盘,组建了3组RAIDZ,部分磁盘作为热备盘。zfs文件系统。服务器故障:服务器运行中突然崩溃,排除断电、进水、异常操作等外部因素。工作人员将服务器重启后发现无法进入操作系统。将故障服务器中所有硬盘编号后取出,经过硬件工程师检测没有发现有硬......
  • python是否存在LTS这个概念
    LTS(Long-TermSupport,长期支持)是一个常见的概念,通常用于描述软件的发布策略。然而,与其他一些编程语言和软件不同,Python并没有官方的LTS版本。在本文中,我们将探讨Python的版本发布和支持策略,以及如何选择适合自己需求的Python版本。Python版本发布策略Python的版本发布策略是基于PEP......
  • Python 库和模块的概念有何不同
    在Python编程中,库(Library)和模块(Module)是两个常见的概念。虽然它们有一些相似之处,但在功能和使用方法上有一些区别。本文将介绍Python库和模块的概念,并解释它们之间的区别。模块的概念模块是Python中的一个基本概念,它是一个包含了变量、函数和类等定义的文件。一个模块可以包含多个......
  • jieba分词 红楼梦相关分词
    importjiebatext=open('C:\Users\李文卓\Desktop\xn\红楼梦.txt',"r",encoding='utf-8').read()words=jieba.lcut(text)counts={}forwordinwords:iflen(word)==1:#排除带个字符的分词效果continueelse:counts[word]=counts.get(word,0)+1it......
  • 服务压测偶现卡住问题分析
    服务框架介绍服务是一个生产者,一个消费者,通过对象池分配对象,通过加锁队列进行数据交互。现象通过观察服务日志,发现服务经常报timeout错误初步定位内核打印执行步骤,发现服务是阻塞在最后一帧,由于内核没有发出最后一帧,因此服务一直在尝试获取最后一帧详细日志分析通过分析,发......