首页 > 其他分享 >这样delete居然不走索引

这样delete居然不走索引

时间:2023-12-26 10:23:20浏览次数:39  
标签:task uid 索引 table 居然 where id select delete

背景

由于业务变迁,合规要求,我们需要删除大量非本公司的数据,涉及到上百张表,几个T的数据清洗。我们的做法是先从基础数据出发,将要删除的数据id收集到一张表,然后再由上往下删除子表,多线程并发处理。
我们使用的是阿里的polardb,完全兼容mysql协议,5.7版本,RC隔离级别。删除过程一直很顺利,突然有一天报了大量:“Lock wait timeout exceeded; try restarting transaction”。从日志上看是获取锁失败了,马上想到出现死锁了,但我们使用RC,这个隔离级别下会出现不可重复读和幻读,但没有间隙锁等,并发效率比较高,在我们实际应用过程中,也很少遇到加锁失败的问题。

单从日志看我们确实先入为主了,以为是死锁问题,但sql比较简单,表数据量在千万级别,其中task_id和uid均有索引,如下:

delete from t_table_1 where task_id in (select id from t_table_2 where uid = #{uid})

拿到报错的参数,查询要删除的数据也不多,联系dba同学确认没有死锁日志,但出现大量慢sql,那为什么这条sql会是慢sql呢?

问题复现

表结构简化如下:

CREATE TABLE `t_table_1` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `task_id` bigint(20) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_task_id` (`task_id`)
) ENGINE=InnoDB;

CREATE TABLE `t_table_2` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `uid` bigint(20) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `idx_uid` (`uid`)
) ENGINE=InnoDB;

开始我们拿sql到数据库查询平台查库执行计划,无奈这个平台有bug,delete语句无法查看,所以我们改成select,“应该”是一样。这个“应该”加了双引号,导致我们走了一点弯路。

EXPLAIN SELECT * from t_table_1 where task_id in (select id from t_table_2 where uid = 1)

explain后可以看到是走了索引的

到这里可以总结:
1.没有死锁,这点比较肯定,因为没有日志,也符合我们的理解。
2.有慢sql,这点比较奇怪,通过explain select语句是走索引的,但数据库慢日志记录到,全表扫描,不会错。

那是select和delete的执行计划不同吗?正常来说应该是一样的,delete无非就是先查,加锁,再删。
拿到本地环境执行再次查看执行计划,发现确实不同,select的是一样的,但delete的变成全表扫描了。

首先这就符合问题现象了,虽然没有死锁,但每个delete语句都全表扫描,相当于全表加锁,后面的请求就只能等待释放锁,等到超时就出现“Lock wait timeout exceeded”。
那为什么delete会不走索引呢,接下来我们分析一下。

分析

select * from t_table_1 where task_id in (select id from t_table_2 where uid = #{uid})

回到这条简单sql,包含子查询,按照我们的理解,mysql应该是先执行子查询:select id from t_table_2 where uid = #{uid},然后再执行外部查询:select * from t_table_1 where task_id in(),但这不一定,例如我关了这个参数:

set optimizer_switch='semijoin=off';

这里我们先不用管这个参数的作用,下面会说到。
关闭后上面的sql就变成先扫描外部的t_table_1,然后再逐行去匹配子查询了,假设t_table_1的数据量非常大,那全表扫描时间就会很长,我们可以通过optimizer_trace证明一下。
optimizer_trace是mysql一个跟踪功能,可以跟踪优化器做的各种决策,包括sql改写,成本计算,索引选择详细过程,并将跟踪结果记录到INFORMATION_SCHEMA.OPTIMIZER_TRACE表中。

set session optimizer_trace="enabled=on";
set OPTIMIZER_TRACE_MAX_MEM_SIZE=10000000; -- 防止内容过多被截断   
SELECT * from t_table_1 where task_id in (select id from t_table_2 where uid = 1)
SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;

输出结果比较长,这里我只挑选主要信息

"steps": [
    {
        "expanded_query": "/* select#2 */ select `t_table_2`.`id` from `t_table_2` where (`t_table_2`.`uid` = 1)"
    },
    {
        "transformation": {
            "select#": 2,
            "from": "IN (SELECT)",
            "to": "semijoin",
            "chosen": false
        }
    },
    {
        "transformation": {
            "select#": 2,
            "from": "IN (SELECT)",
            "to": "EXISTS (CORRELATED SELECT)",
            "chosen": true,
            "evaluating_constant_where_conditions": [
            ]
        }
    }
]

"expanded_query": "/* select#1 */ select `t_table_1`.`id` AS `id`,`t_table_1`.`task_id` AS `task_id` from `t_table_1` where <in_optimizer>(`t_table_1`.`task_id`,<exists>(/* select#2 */ select `t_table_2`.`id` from `t_table_2` where ((`t_table_2`.`uid` = 1) and (<cache>(`t_table_1`.`task_id`) = `t_table_2`.`id`)))) limit 0,1000"

sql简写一下就是

select * from t_table_1 t1 where exists (select t2.id from t_table_2 t2 where t2.uid = 1 and t1.task_id = t2.id)

可以看到in可以改成semijoin或exists,最终优化器选择了exists,因为我们关闭了semijoin开关。
按照这条sql逻辑查询,将会遍历t_table_1表的每一行,然后代入子查询看是否匹配,当t_table_1表的行数很多时,耗时将会很长。
通过explain观察执行计划可以看到t_table_1进行了全表扫描。
备注:想查看优化器改下后生成的sql,也可以通过show extended + show warnings:

explain extended SELECT * from t_table_1 where task_id in (select id from t_table_2 where uid = 1);
show warnings;

接着我们打开上面的参数开关,再次optimizer_trace跟踪一下

set optimizer_switch='semijoin=on';

得到如下:

"steps": [
    {
        "expanded_query": "/* select#2 */ select `t_table_2`.`id` from `t_table_2` where (`t_table_2`.`uid` = 1)"
    },
    {
        "transformation": {
            "select#": 2,
            "from": "IN (SELECT)",
            "to": "semijoin",
            "chosen": true
        }
    }
]

"expanded_query": "/* select#1 */ select `t_table_1`.`id` AS `id`,`t_table_1`.`task_id` AS `task_id` from `t_table_1` semi join (`t_table_2`) where (1 and (`t_table_2`.`uid` = 1) and (`t_table_1`.`task_id` = `t_table_2`.`id`)) limit 0,1000"

sql简写一下就是

select * from t_table_1 semi join t_table_2 where (`t_table_2`.`uid` = 1 and `t_table_1`.`task_id` = `t_table_2`.`id`)"

可以看到优化器这次选择将in转换成semijoin了,观察执行计划可以看到走了索引。

那如果换成delete呢?同样保持开关打开,跟踪如下:

"steps": [
    {
        "expanded_query": "/* select#2 */ select `t_table_2`.`id` from `t_table_2` where (`t_table_2`.`uid` = 1)"
    },
    {
        "transformation": {
            "select#": 2,
            "from": "IN (SELECT)",
            "to": "semijoin",
            "chosen": false
        }
    },
    {
        "transformation": {
            "select#": 2,
            "from": "IN (SELECT)",
            "to": "EXISTS (CORRELATED SELECT)",
            "chosen": true,
            "evaluating_constant_where_conditions": [
            ]
        }
    }
]

可以看到和关闭semijoin一样,对于delete优化器也是选择了exists,我们表是千万级别,全表扫描加锁,其它操作语句自然都会超时获取不到锁而失败。

semijoin

semijoin翻译过来是半连接,是mysql针对in/exists子查询进行优化的一种技术,参见文档
可以使用SHOW VARIABLES LIKE 'optimizer_switch';查看semijoin是否开启。
上面使用IN-TO-EXISTS改写后,外层表变成驱动表,效率很差,那如果使用inner join呢,使用条件过滤后,用小表驱动大表,但join查询结果是会重复的,和子查询语义不一定相同。如:

SELECT class.class_num, class.class_name
    FROM class
    INNER JOIN roster
    WHERE class.class_num = roster.class_num;

这样会查询出多条相同class_num的记录,如果子查询,那么查询出来的class_num是不一样的,也就是去重。当然也可以加上distinct,但这样效率比较低。

SELECT class_num, class_name
    FROM class
    WHERE class_num IN
        (SELECT class_num FROM roster);

semijoin有以下几种策略,以下是官方的解释:

Duplicate Weedout: Run the semijoin as if it was a join and remove duplicate records using a temporary table.

FirstMatch: When scanning the inner tables for row combinations and there are multiple instances of a given value group, choose one rather than returning them all. This "shortcuts" scanning and eliminates production of unnecessary rows.

LooseScan: Scan a subquery table using an index that enables a single value to be chosen from each subquery's value group.

Materialize the subquery into an indexed temporary table that is used to perform a join, where the index is used to remove duplicates. The index might also be used later for lookups when joining the temporary table with the outer tables; if not, the table is scanned. For more information about materialization, see Section 8.2.2.2, “Optimizing Subqueries with Materialization”.

以Duplicate Weedout为例,mysql会先将roster的记录以class_num为主键添加到一张临时表,达到去重的目的。接着扫描临时表,每行去匹配外层表,满足条件则放到结果集,最终返回。
具体使用哪种策略是优化器根据具体情况分析得出的,可以从explain的extra字段看到。

那么为什么delete没有使用semijoin优化呢?
这其实是mysql的一个bug,bug地址,描述场景和我们的一样。
文中还提到这个问题在mysql 8.0.21被修复,地址

大致就是解释了一下之前版本没有支持的原因,提到主要是因为单表没有可以JOIN的对象,没法进行一系列的优化,所以单表的UPDATE/DELETE是无法用semijoin优化的。
这个优化还有一些限制,例如不能使用order by和limit,我们还是应该尽量避免使用子查询。
在我们的场景通过将子查询改写为join即可走索引,现在也明白为什么老司机们都说尽量用join代替了子查询了吧。

更多分享,欢迎关注我的github:https://github.com/jmilktea/jtea

标签:task,uid,索引,table,居然,where,id,select,delete
From: https://www.cnblogs.com/jtea/p/17927541.html

相关文章

  • MySQL-索引数据结构
    BTreeB-树即B树。指的是BalanceTree,也就是平衡树,平衡树是一颗查找树,并且所有叶子节点位于同一层。每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点。所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中。B+Tree是B树的一种变形,它是基于B......
  • 放弃了技术优势的程序员,居然也能挣大钱?
    前言直接说事实哈,我身边年薪百万以上的朋友,不管是架构师还是技术总监/CTO,他们突破圈层,赚大钱的逻辑居然是放弃自己的最大优势-技术。那他们靠什么绝技?答案就是业务和管理!具体一点就是要么成为熟悉某一个行业专家(业务架构/基础架构),要么管理50人或以上团队。不过不管是哪种,都是自己......
  • MySQL索引-索引结构
    索引是什么索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。优缺点:优点:提高数据检索效率,降低数据库的IO成本通......
  • 发现sql慢就加索引?非也!
    【慢Sql,耗时≈5s】在Archery平台发现近期的一个慢sql:SELECT*FROMemax_order_detailWHEREimport_order_no=? 经测试,的确是慢。SELECT*FROMemax_order_detailWHEREimport_order_no='1738120234847571968'。尝试加上limit1,依然超过5s。​【如何优化】优化方式......
  • 嘿,我使用了mp的自连接+分页查询之后,再使用条件查询居然失效了。
    原因:我想通过自连接查询将一个表的两条数据放在一起,为此我重写了mp的分页查询IPage<Indi>selectIndiShow(IPage<Indi>page,@Param(Constants.WRAPPER)QueryWrapper<Indi>wrapper);我又在xml中这样写mapper<?xmlversion="1.0"encoding="UTF-8"?><!DOCTY......
  • MySql索引及简单的事务分析
    索引什么是MySql索引?索引是一种单独的、物理的对数据库表中一列或多列的值进行排序的一种存储结构。包含着对数据表里所有记录的引用指针。索引的易忽略点:索引相当于书的目录,可以加快查找的速度,但同时也提高了增、删、改的开销;索引也提高了空间的开销,构造索引也就需要额外的硬盘......
  • Elasticsearch 创建索引
    使用Elasticsearch创建索引步骤:打开Elasticsearch的命令行工具(如cURL或Elasticsearch提供的Kibana工具)或集成开发环境(如Elasticsearch的官方客户端库或第三方客户端库)。使用HTTP请求的PUT方法创建索引。需要指定索引的名称,以简单的字符串表示。使用以下命令创建名......
  • 一招让order by id索引失效!
    测试用例CREATETABLE`sbtest1`(`id`int(10)unsignedNOTNULLAUTO_INCREMENT,`k`int(10)unsignedNOTNULLDEFAULT'0',`c`char(120)NOTNULLDEFAULT'',`pad`char(60)NOTNULLDEFAULT'',PRIMARYKEY(`id`),KEY......
  • 谷歌搜索引擎数据采集工具
    谷歌搜索引擎数据采集工具(“大镜山谷歌搜索数据采集器”,官网168318.com),基于谷歌搜索引擎的数据采集软件。根据用户输入的关键词,实时采集采集谷歌的搜索结果。其智能挖掘功能非常强大,采集的数据包括网站、标题、描述、邮件地址、手机或电话号码、facebook、linkin、twitter、youtube......
  • 被面试官PUA了:创建索引时一定会锁表?
    索引主要是用于提高数据检索速度的一种机制,通过索引数据库可以快速定位到目标数据的位置,而不需要遍历整个数据集,它就像书籍的目录部分,有它的存在,可以大大加速查询的效率。那么问题来了:在创建索引时一定会锁表吗?如果你看的是网上的一些资料,或者是通过chatgpt,那么很可能得到的......