先求出初始时绿连通块数量。
将一个绿色格子染成红色,会改变绿连通块数量,当且仅当这个绿色格子是孤点或割点。如果是孤点,会使得绿连通块数量减少一;如果是割点,会使得绿连通块数量增加它所在的点双数量减一。根据上述规则可以求出每个绿色格子染红后的绿连通块数量,求平均值即可。
时间复杂度 \(O(nm)\)。
// Problem: G - Christmas Color Grid 2
// Contest: AtCoder - UNIQUE VISION Programming Contest 2023 Christmas (AtCoder Beginner Contest 334)
// URL: https://atcoder.jp/contests/abc334/tasks/abc334_g
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
//By: OIer rui_er
#include <bits/stdc++.h>
#define rep(x, y, z) for(int x = (y); x <= (z); ++x)
#define per(x, y, z) for(int x = (y); x >= (z); --x)
#define debug(format...) fprintf(stderr, format)
#define fileIO(s) do {freopen(s".in", "r", stdin); freopen(s".out", "w", stdout);} while(false)
#define endl '\n'
using namespace std;
typedef long long ll;
mt19937 rnd(std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::system_clock::now().time_since_epoch()).count());
int randint(int L, int R) {
uniform_int_distribution<int> dist(L, R);
return dist(rnd);
}
template<typename T> void chkmin(T& x, T y) {if(x > y) x = y;}
template<typename T> void chkmax(T& x, T y) {if(x < y) x = y;}
template<int mod>
inline unsigned int down(unsigned int x) {
return x >= mod ? x - mod : x;
}
template<int mod>
struct Modint {
unsigned int x;
Modint() = default;
Modint(unsigned int x) : x(x) {}
friend istream& operator>>(istream& in, Modint& a) {return in >> a.x;}
friend ostream& operator<<(ostream& out, Modint a) {return out << a.x;}
friend Modint operator+(Modint a, Modint b) {return down<mod>(a.x + b.x);}
friend Modint operator-(Modint a, Modint b) {return down<mod>(a.x - b.x + mod);}
friend Modint operator*(Modint a, Modint b) {return 1ULL * a.x * b.x % mod;}
friend Modint operator/(Modint a, Modint b) {return a * ~b;}
friend Modint operator^(Modint a, int b) {Modint ans = 1; for(; b; b >>= 1, a *= a) if(b & 1) ans *= a; return ans;}
friend Modint operator~(Modint a) {return a ^ (mod - 2);}
friend Modint operator-(Modint a) {return down<mod>(mod - a.x);}
friend Modint& operator+=(Modint& a, Modint b) {return a = a + b;}
friend Modint& operator-=(Modint& a, Modint b) {return a = a - b;}
friend Modint& operator*=(Modint& a, Modint b) {return a = a * b;}
friend Modint& operator/=(Modint& a, Modint b) {return a = a / b;}
friend Modint& operator^=(Modint& a, int b) {return a = a ^ b;}
friend Modint& operator++(Modint& a) {return a += 1;}
friend Modint operator++(Modint& a, int) {Modint x = a; a += 1; return x;}
friend Modint& operator--(Modint& a) {return a -= 1;}
friend Modint operator--(Modint& a, int) {Modint x = a; a -= 1; return x;}
friend bool operator==(Modint a, Modint b) {return a.x == b.x;}
friend bool operator!=(Modint a, Modint b) {return !(a == b);}
};
typedef Modint<998244353> mint;
const int K = 1e3 + 5, N = 1e6 + 5;
const int nxt[4][2] = {{0, -1}, {-1, 0}, {0, 1}, {1, 0}};
int n, m, k, vis[K][K];
string s[K];
int dfn[N], low[N], cut[N], cnt[N], tms;
vector<vector<int>> bcc;
stack<int> stk;
mint ans, tot;
inline int getId(int x, int y) {
return (x - 1) * m + y;
}
void dfs(int x, int y, int u) {
vis[x][y] = u;
rep(d, 0, 3) {
int nx = x + nxt[d][0], ny = y + nxt[d][1];
if(s[nx][ny] == '#' && !vis[nx][ny]) dfs(nx, ny, u);
}
}
struct Edge {
int v, nxt;
Edge(int a = 0, int b = 0) : v(a), nxt(b) {}
}e[N * 8];
int h[N], ne = 1;
inline void add(int u, int v) {
e[++ne] = Edge(v, h[u]); h[u] = ne;
e[++ne] = Edge(u, h[v]); h[v] = ne;
}
void tarjan(int u, int fa) {
dfn[u] = low[u] = ++tms;
stk.push(u);
int deg = 0;
for(int i = h[u]; i; i = e[i].nxt) {
int v = e[i].v;
if(v == fa) continue;
if(!dfn[v]) {
++deg;
tarjan(v, u);
chkmin(low[u], low[v]);
if(low[v] >= dfn[u]) {
cut[u] = 1;
bcc.push_back({});
while(true) {
int w = stk.top(); stk.pop();
bcc.back().push_back(w);
++cnt[w];
if(w == v) break;
}
bcc.back().push_back(u);
++cnt[u];
}
}
else chkmin(low[u], dfn[v]);
}
if(!fa && deg == 1) cut[u] = 0;
if(!fa && !deg) {
bcc.push_back({u});
cut[u] = -1;
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> m;
s[0] = s[n + 1] = string(m + 2, ' ');
rep(i, 1, n) {
cin >> s[i];
s[i] = ' ' + s[i] + ' ';
}
rep(i, 1, n) rep(j, 1, m) if(s[i][j] == '#' && !vis[i][j]) dfs(i, j, ++k);
rep(i, 1, n) {
rep(j, 1, m) {
if(s[i][j] == '#') {
rep(d, 0, 3) {
int nx = i + nxt[d][0], ny = j + nxt[d][1];
if(s[nx][ny] == '#') add(getId(i, j), getId(nx, ny));
}
}
}
}
rep(i, 1, n) {
rep(j, 1, m) {
if(s[i][j] == '#' && !dfn[getId(i, j)]) {
tarjan(getId(i, j), 0);
}
}
}
rep(i, 1, n) {
rep(j, 1, m) {
if(s[i][j] == '#') {
++tot;
ans += k;
if(cut[getId(i, j)] == 1) ans += cnt[getId(i, j)] - 1;
else if(cut[getId(i, j)] == -1) --ans;
}
}
}
cout << ans / tot << endl;
return 0;
}
标签:return,Color,题解,rep,int,Grid,operator,Modint,friend
From: https://www.cnblogs.com/ruierqwq/p/abc334g.html