如何提升系统性能?
高并发系统设计的三大目标:高性能、高可用、可扩展
高并发:高性能(响应时间)、高可用(down机、故障、维护)、可扩展(应急扩容)
响应时间(平均值、最大值、分位值),响应为1s,吞吐量为每秒1次,响应缩短到10ms,吞吐量上升到每秒100次,从用户体验来说:200ms分界点,1s为另一个分界点,健康系统的99分位值的响应时间控制在200ms以内,不超过1s的请求占比要超过99.99%
高并发下的性能优化手段:
1.提高系统的处理核心数(吞吐量=核心数(并发进程数)/响应时间(s)) 但并非无限增加核心数就可以增加吞吐量,随着进程数增加,并行的任务对于资源的争夺也增加,在某 个临界点,进程增加导致系统的性能下降,这就是性能测试中的拐点模型,所以在评估系统性能时,需要做压力测试,找到拐点
2.减少单次任务响应时间
cpu密集型:优化算法
io密集型:
1.采用工具,linux的工具集
2.通过监控,对任务的每一个步骤做分时统计,从而找到任务中哪一步小号消耗了更多的时间
tips:
1.业务价值->承载高并发->性能优化。一切的前提是业务价值需要。如果没有足够的价值,那么可读性才是第一,性能在需要的地方是no.1,但不需要的地方可能就是倒数第一稞。当下技术框架出来的软件差不到哪去,没有这种及时响应诉求的地方,削峰下慢慢跑就是了。(工作需要,常在缺少价值的地方着手性能优化,让我对这种就为个数字的操作很反感。要知道,异步,并发编程,逻辑缓存,算法真的会加剧系统的复杂度,得不偿失。如果没那个价值,简单才是王道)
2.提高并发度。要么加硬件,要么降低服务响应时间。做为开发,我们的目光更聚焦在降低响应时间这块。
1.采用非阻塞的rpc调用(高效的远端请求模式,采用容器的覆盖网络我认为也算)
2.将计算密集和io密集的的逻辑分割开,单独线程池,调整线程比例压榨单机性能(或者说找拐点)。
3.做缓存,io耗时的缓存和计算耗时的缓存(多级缓存,数据压缩降低带宽)。
4.采用享元模式,用好对象池和本地线程空间,尽量减少对象创建与销毁的开销,提高复用。
5.业务拆分,像状态变化后的外部系统通知,业务监控,es或solr等副本数据同步等操作,无需在主流程中做的事都拆掉。走canal监听表数据变化,推mq保最终一致的方式从业务项目完全解偶出来。
6.fork_join,分而治之的处理大任务。并发编程,采用多线程并行的方式处理业务。(规避伪共享,减小锁力度,采用合适的锁)。
7.数据库配置优化,查询优化。(存储优化比较头疼,毕竟不按业务拆单点跑不掉,单点性能就要命。基本只能内存库先行,后台同步数据做持久。然后内存库多副本,自修复,保留一系列自修复失败的修复手段)
系统怎样做到高可用?
1.开发设计层面
冗余---主备,负载均衡,failover(故障转移)
取舍----降级,限流,熔断,超时控制
降级是为了保证核心服务的稳定而牺牲非核心服务的做法。比方说我们发一条微博会先经过反垃圾服务检测,检测内容是否是广告,通过后才会完成诸如写数据库等逻辑。
限流完全是另外一种思路,它通过对并发的请求进行限速来保护系统。
2.运维层面
灰度发布,故障演练,监控报警
如何让系统易于扩展?
1.业务拆分
照业务拆分,在一定程度上提升了系统的扩展性,但系统运行时间长了之后,单一的业务数据库在容量和并发请求量上仍然会超过单机的限制。这时,我们就需要针对数据库做第二次拆分。
我们还可以根据业务接口的重要程度,把业务分为核心池和非核心池。打个比方,就关系池而言,关注、取消关注接口相对重要一些,可以放在核心池里面;拉黑和取消拉黑的操作就相对不那么重要,可以放在非核心池里面。这样,我们可以优先保证核心池的性能,当整体流量上升时优先扩容核心池,降级部分非核心池的接口,从而保证整体系统的稳定性。
2.存储扩展
水平拆分之后,我们就可以让数据库突破单机的限制了。但这里要注意,我们不能随意地增加节点,因为一旦增加节点就需要手动地迁移数据,成本还是很高的。所以基于长远的考虑,我们最好一次性增加足够的节点以避免频繁的扩容。
标签:缓存,并发,基础,性能,系统,业务,响应,设计 From: https://www.cnblogs.com/twh233/p/17914407.html