Numpy: 基础的数学计算模块,以矩阵为主,纯数学。
SciPy: 基于Numpy,提供方法(函数库)直接计算结果,封装了一些高阶抽象和物理模型。比方说做个傅立叶变换,这是纯数学的,用Numpy;做个滤波器,这属于信号处理模型了,在Scipy里找。
Pandas: 提供了一套名为DataFrame的数据结构,适合统计分析中的表结构,在上层做数据分析。
Numpy:
来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。数据结构为ndarray,一般有三种方式来创建。
Pandas:
基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。最具有统计意味的工具包,某些方面优于R软件。数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表,如果深入学习,会发现Pandas和SQL相似的地方很多,例如merge函数),三维的Panel(Pan(el) + da(ta) + s,知道名字的由来了吧)。
1.汇总和计算描述统计,处理缺失数据 ,层次化索引
2.清理、转换、合并、重塑、GroupBy技术
3.日期和时间数据类型及工具(日期处理方便地飞起)
Matplotlib:
Python中最著名的绘图系统,很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。
绘制的图形可以大致按照ggplot的颜色显示,但是还是感觉很鸡肋。但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
需要掌握的是:
1.散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
2.绘图的三大系统:pyplot,pylab(不推荐),面向对象
3.坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
4.金融的同学注意的是:可以直接调用Yahoo财经数据绘图
Scipy:
方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。基本可以代替Matlab,但是使用的话和数据处理的关系不大,数学系,或者工程系相对用的多一些。
近期发现有个statsmodel可以补充scipy.stats,时间序列支持完美
一。 数组要比列表效率高很多 numpy高效的处理数据,提供数组的支持,python默认没有数组。pandas、scipy、matplotlib都依赖numpy。 pandas主要用于数据挖掘,探索,分析 matplotlib用于作图,可视化 scipy进行数值计算,如:积分,傅里叶变换,微积分 statsmodels用于统计分析 Gensim用于文本挖掘 sklearn机器学习, keras深度学习 二。 numpy和mkl 下载安装 pandas和maiplotlib网络安装 scipy 下载安装 statsmodels和Gensim网络安装 三numpy的操作。 import numpy # 创建数一维数组组 # numpy.array([元素1,元素2,......元素n]) x = numpy.array(['a', '9', '8', '1']) # 创建二维数组格式 # numpy.array([[元素1,元素2,......元素n],[元素1,元素2,......元素n],[元素1,元素2,......元素n]]) y = numpy.array([[3,5,7],[9,2,6],[5,3,0]]) # 排序 x.sort() y.sort() # 取最大值 y1 = y.max() # 取最小值 y2 = y.main() # 切片 四pandas的操作。 import pandas as pda # 使用pandas生成数据 # Series代表某一串数据 index指定行索引名称,Series索引默认从零开始 # DataFrame代表行列整合出来的数据框,columns 指定列名 a = pda.Series([8, 9, 2, 1], index=['one', 'two', 'three', 'four']) # 以列表的格式创建数据框 b = pda.DataFrame([[5,6,2,3],[3,5,1,4],[7,9,3,5]], columns=['one', 'two', 'three', 'four'],index=['one', 'two', 'three']) # 以字典的格式创建数据框 c = pda.DataFrame({ 'one':4, # 会自动补全 'two':[6,2,3], 'three':list(str(982)) }) # b.head(行数)# 默认取前5行头 # b.tail(行数)# 默认取后5行尾 # b.describe() 统计数据的情况 count mean std min 25% max e = b.head() f = b.describe() # 数据的转置,及行变成列,列变成行 g = b.T 五python数据的导入 import pandas as pad f = open('d:/大.csv','rb') # 导入csv a = pad.read_csv(f, encoding='python') # 显示多少行多少列 a.shape() a.values[0][2] #第一行第三列 # 描述csv数据 b = a.describe() # 排序 c = a.sort_values() # 导入excel d = pad.read_excel('d:/大.xls') print(d) print(d.describe()) # 导入mysql import pymysql conn = pymysql.connect(host='localhost', user='root', passwd='root', db='') sql = 'select * from mydb' e = pad.read_sql(sql, conn) # 导入html表格数据 需要先安装 html5lib和bs4 g = pad.read_html('https://book.douban.com/subject/30258976/?icn=index-editionrecommend') # 导入文本数据 h = pad.read_table('d:/lianjie.txt','rb', engine='python') print(h.describe()) 六matplotlib的使用 # 折线图/散点图用plot # 直方图用hist import matplotlib.pylab as pyl import numpy as npy x = [1,2,4,6,8,9] y = [5,6,7,8,9,0] pyl.plot(x, y) #plot(x轴数据,y轴数据,展现形式) # o散点图,默认是直线 c cyan青色 r red红色 m magente品红色 g green绿色 b blue蓝色 y yellow黄色 w white白色 # -直线 --虚线 -. -.形式 :细小虚线 # s方形 h六角形 *星星 + 加号 x x形式 d菱形 p五角星 pyl.plot(x, y, 'D') pyl.title('name') #名称 pyl.xlabel('xname') #x轴名称 pyl.ylabel('yname') #y轴名称 pyl.xlim(0,20) #设置x轴的范围 pyl.ylim(2,22) #设置y轴的范围 pyl.show() # 随机数的生成 data = npy.random.random_integers(1,20,100) #(最小值,最大值,个数) # 生成具有正态分布的随机数 data2 = npy.random.normal(10.0, 1.0, 10000) #(均值,西格玛,个数) # 直方图hist pyl.hist(data) pyl.hist(data2) # 设置直方图的上限下限 sty = npy.arange(2,20,2) #步长也表示直方图的宽度 pyl.hist(data, sty, histtype='stepfilled') # 去除轮廓 # 子图的绘制和使用 pyl.subplot(2, 2, 2) # (行,列,当前区域) x1 = [2,3,5,8,6,7] y1 = [2,3,5,9,6,7] pyl.plot(x1, y1) pyl.subplot(2, 2, 1) # (行,列,当前区域) x1 = [2,3,5,9,6,7] y1 = [2,3,5,9,6,7] pyl.plot(x1, y1) pyl.subplot(2, 1, 2) # (行,列,当前区域) x1 = [2,3,5,9,6,7] y1 = [2,3,9,5,6,7] pyl.plot(x1, y1) pyl.show()
标签:plot,matplotlib,scipy,pyl,y1,numpy,pandas From: https://www.cnblogs.com/vinden/p/17913194.html