首页 > 其他分享 >BigdataAIML-ML-Models for machine learning Explore the ideas behind machine learning models and some

BigdataAIML-ML-Models for machine learning Explore the ideas behind machine learning models and some

时间:2023-12-18 21:26:14浏览次数:38  
标签:used models machine set algorithms learning each

最好的机器学习教程系列:https://developer.ibm.com/articles/cc-models-machine-learning/
By M. Tim Jones, Published December 4, 2017

Models for machine learning

Algorithms used in machine learning fall roughly into three categories: supervised, unsupervised, and reinforcement learning

  • Supervised learning involves feedback to indicate when a prediction is right or wrong,
  • Unsupervised learning involves no response: The algorithm simply tries to categorize data based on its hidden structure.
  • Reinforcement learning is similar to supervised learning in that it receives feedback, but it's not necessarily for each input or state.

This tutorial explores the ideas behind these learning models and some key algorithms used for each.

Machine-learning algorithms continue to grow and evolve. In most cases, however, algorithms tend to settle into one of three models for learning. The models exist to adjust automatically in some way to improve their operation or behavior.

Figure 1. Three learning models for algorithms

  • In supervised learning: a data set includes its desired outputs (or labels) such that a function can calculate an error for a given prediction. The supervision comes when a prediction is made and an error produced (actual vs. desired) to alter the function and learn the mapping.

  • In unsupervised learning: a data set doesn't include a desired output; therefore, there's no way to supervise the function. Instead, the function attempts to segment the data set into "classes" so that each class contains a portion of the data set with common features.

  • in reinforcement learning: the algorithm attempts to learn actions for a given set of states that lead to a goal state. An error is provided not after each example (as is the case for supervised learning) but instead on receipt of a reinforcement signal (such as reaching the goal state). This behavior is similar to human learning, where feedback isn't necessarily provided for all actions but when a reward is warranted.

Now, let's dig into each model and examine their approaches and key algorithms.

标签:used,models,machine,set,algorithms,learning,each
From: https://www.cnblogs.com/abaelhe/p/17912297.html

相关文章

  • Deep Residual Learning for Image Recognition:ResNet
    DeepResidualLearningforImageRecognition*Authors:[[KaimingHe]],[[XiangyuZhang]],[[ShaoqingRen]],[[JianSun]]DOI:10.1109/CVPR.2016.90初读印象comment::(ResNet)提出残差链接以解决网络训练效率随着深度增加而下降的情况。Why网络深度对图像识别......
  • Learning to Rank — xgboost 2.0.2
    *[LearningtoRank—xgboost2.0.2documentation](https://xgboost.readthedocs.io/en/stable/tutorials/learning_to_rank.html)*[XGBoost的原理、公式推导、Python实现和应用-知乎](https://zhuanlan.zhihu.com/p/162001079)*[XGBoostJVMPackage—xgboost2.0.2do......
  • A Guide to Image and Video based Small Object Detection using Deep Learning : Ca
    AGuidetoImageandVideobasedSmallObjectDetectionusingDeepLearning:CaseStudyofMaritimeSurveillance基于图像和视频的小对象指南使用深度学习进行检测:的案例研究海上监视1介绍在本文中我们对2017年至2022年间发表的160多篇研究论文进行了全面回顾,以......
  • 神经网络优化篇:机器学习基础(Basic Recipe for Machine Learning)
    机器学习基础下图就是在训练神经网络用到的基本方法:(尝试这些方法,可能有用,可能没用)这是在训练神经网络时用到地基本方法,初始模型训练完成后,首先要知道算法的偏差高不高,如果偏差较高,试着评估训练集或训练数据的性能。如果偏差的确很高,甚至无法拟合训练集,那么要做的就是选择一个新......
  • 解决k8s Get http://127.0.0.1:10252/healthz: dial tcp 127.0.0.1:10252: connect: c
    安装完k8s集群之后很可能会出现一下情况:[root@master1~]#kubectlgetcsNAMESTATUSMESSAGEERRORschedulerUnhealthyGethttp://127.0.0.1:10251......
  • Machine Learning in Python
    MetricFormulaInterpretationAccuracy$\frac{TP+TN}{TP+TN+FP+FN}$OverallperformanceofmodelPrecision$\frac{TP}{TP+FN}$HowaccuratethepositivepredictionsareRecallSensitivity$\frac{TP}{TP+FP}$Coverageofactualpositivesampl......
  • Ansor:Generating High-Performance Tensor Program for Deep Learning
    Ansor:GeneratingHigh-PerformanceTensorProgramforDeepLearningAbstract高性能的张量程序对于保证深度神经网络的高效执行十分关键,但是在不同硬件平台上获取高性能的张量程序并不容易。近年的研究中,深度学习系统依赖硬件供应商提供的算子库,或者多种搜索策略来获得高性能的......
  • RLHF · PbRL | 选择 near on-policy query,加速 policy learning 收敛速度
    论文题目:Query-PolicyMisalignmentinPreference-BasedReinforcementLearning,ICML2023Workshop“TheManyFacetsofPreference-BasedLearning”。(其实不太知道workshop是什么概念…)pdf版本:https://arxiv.org/abs/2305.17400html版本:https://ar5iv.labs.arxiv.or......
  • Q-learning与Sarsa算法辨析
     这个是Q-learing的一个算法,根据代码,它就是,先设定训练100次,然后,给它一个随机的状态,这里我们假设状态6就是终点,那么走迷宫的时候,如果没走到6,就要一直走下去,,所以里面还要用到一个while循环,然后在每个状态的时候,找一个非负的动作,存储在数组里,(算是合理动作的集合吧),下一个状态的指针......
  • Machine is not on the network
     在调试Androidjni的时候发现一个奇怪的问题 在连接socket的时候老是报错m_sock=socket(AF_INET,SOCK_STREAM,0);if(m_sock<0){debug(LEVEL_ERROR,"Socketcreateerror%d\r\n",errno);return-1;} 报错  Socketc......