首页 > 其他分享 >2023-12-18 每天一练

2023-12-18 每天一练

时间:2023-12-18 17:47:05浏览次数:42  
标签:max 12 gcd nums int 18 mid 数组 2023

LeetCode 每日一题

162. 寻找峰值

问题

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。

你可以假设 nums[-1] = nums[n] = -∞ 。

你必须实现时间复杂度为 O(log n) 的算法来解决此问题。

解答

显然需要二分法,二分的要点为:

  1. 确定区间形式,即 左闭右闭 还是 左闭右开,由此决定 终止条件 以及 左右指针如何变换
  2. 确定左右指针变化条件,本题可以观测 mid 左右形式,从而修改左右区间
  3. 确定 最终返回结果

代码:

class Solution:
	# 因为希望遇到答案就停止,所以加了许多判断,不好说这会不会拖慢程序,
    def findPeakElement(self, nums: List[int]) -> int:
        n = len(nums)
        l, r = 0, n - 1
        if n == 1:
            return 0
        mid = l + ((r - l) >> 1)
        while l <= r:
            if nums[l] > nums[ l + 1 ]:
                return l
            if nums[r] > nums[r - 1]:
                return r
            if nums[mid - 1] < nums[mid] and nums[mid + 1] < nums[mid]:
                return mid
            elif nums[mid - 1] < nums[mid] and nums[mid + 1] > nums[mid]:
                l = mid + 1
            else:
                r = mid - 1
            mid = l + ((r - l) >> 1)

拓展

依据灵神的网站题目顺序

926. 将字符串翻转到单调递增

问题

如果一个二进制字符串,是以一些 0(可能没有 0)后面跟着一些 1(也可能没有 1)的形式组成的,那么该字符串是 单调递增 的。

给你一个二进制字符串 s,你可以将任何 0 翻转为 1 或者将 1 翻转为 0 。

返回使 s 单调递增的最小翻转次数。

解答

与 昨天那道题1864. 构成交替字符串需要的最小交换次数 不同

但开始的思考是一样的,先确定终止状态:第一个 1 之后的所有数都是 1

但是它的终止状态与初始状态的关系太为密切,我们无法确定它终止状态字符串的固定形态,不像那道题一样只有两种

确定操作,即 自我翻转,每个操作都只操作字符本身,不会影响前面的已经遍历过的字符串,且只会被前面的字符影响,这是很明显的 DP,因为这样的结构必然拥有 最优子结构。

另外,可以观测到在 终止状态 中,0 的前面必为 0,1 的前面为 1/0,所以可进行 DP,因为它下一个数是否翻转,与上一个数的关系密切。

从另外一个层面解释 DP:

我们假设 终止状态 是 全0 或 全1,那么只要比较字符串中 0/1 的数量即可,但是由于 终止状态 与 初始状态 的 整体关联很大,所以不能简单地比较字符串中 0/1 的数量,而是在遍历的时候记录 前面的满足 终止条件(0 的前面必为 0,1 的前面为 1/0) 的字符串,若满足,则划过,若不满足,则记录,我们只要记录 翻转的次数,因为有两种操作,即 变1 和 变0,所以需要两个数组记录,这也就导出了上述的 DP算法

代码:

class Solution:
    def minFlipsMonoIncr(self, s: str) -> int:
		# 记录 -1 到当前位置的最小翻转次数
		# dp0 表示翻转为 0
		# dp1 表示翻转为1
        dp0 = dp1 = 0
        for c in s:
            dp0New, dp1New = dp0, min(dp0, dp1)
            if c == '1':
                dp0New += 1
            else:
                dp1New += 1
            dp0, dp1 = dp0New, dp1New
        return min(dp0, dp1)

作者:力扣官方题解
链接:https://leetcode.cn/problems/flip-string-to-monotone-increasing/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

拓展

2249. 统计圆内格点数目

问题

给你一个二维整数数组 circles ,其中 circles[i] = [xi, yi, ri] 表示网格上圆心为 (xi, yi) 且半径为 ri 的第 i 个圆,返回出现在 至少一个 圆内的 格点数目 。

注意:

格点 是指整数坐标对应的点。
圆周上的点 也被视为出现在圆内的点。

解答

最为朴素的思想是转换为图的可达性问题,可以使用 BFS 或者 DFS 求解,其时间复杂度应为 \(O(\sum r_i^2)\),而且空间复杂度也十分大,为 \(O(max(xi + ri) * max(yi + ri))\),可以尝试使用数学方法优化

可以先求出 最大的圆的边界,然后再此基础上进行遍历,顺序遍历即可(它也避免了重复点问题),它的算法复杂度和上述算法的差不多,但是代码相当简洁

代码:

class Solution:
    def countLatticePoints(self, circles: List[List[int]]) -> int:
        ans = 0
        circles.sort(key=lambda c: -c[2])  # 按半径从大到小排序,这样能更早遇到包含 (i,j) 的圆
        max_x = max(c[0] + c[2] for c in circles)
        max_y = max(c[1] + c[2] for c in circles)
        for i in range(max_x + 1):
            for j in range(max_y + 1):
                for x, y, r in circles:
                    if (x - i) * (x - i) + (y - j) * (y - j) <= r * r:
                        ans += 1
                        break
        return ans

作者:灵茶山艾府
链接:https://leetcode.cn/problems/count-lattice-points-inside-a-circle/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

拓展

2447. 最大公因数等于 K 的子数组数目

问题

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 nums 的子数组中元素的最大公因数等于 k 的子数组数目。

子数组 是数组中一个连续的非空序列。

数组的最大公因数 是能整除数组中所有元素的最大整数。

解答

  1. 最朴素的算法便是枚举,枚举每个子数组,根据 GCD 的传递性(gcd(a, b) = gcd(b, c),则 gcd(a, b) = gcd(b, c) = gcd(a, b, c)),便能求出子数组的最大公约数是否是 k 了,它的 时间复杂度为 \(O(n^2 \log max(nums))\)
  2. 其次对于这种求子数组的属性,从 1508. 子数组和排序后的区间和 得到启发,可以用一个数组来记录 gcd(nums[i - 1], nums[i]),然后遍历求出其 连续的 k 的个数,再求出该区间的子数组个数加入 结果即可,然后可以反复这一过程(除不断 k 的都丢弃,用数组记录连续 k 的位置信息即可),直到所有数都被抛弃

代码:

def gcd(a:int, b:int) -> int:
	if not b:
		return a
	return gcd(b, a % b)

# 很遗憾,代码暂时未能写出,不过这个想法和灵神的不谋而合,可以参考他的代码
class Solution:
    def subarrayGCD(self, nums: List[int], k: int) -> int:
        ans = 0
        a = []  # [GCD,相同 GCD 区间的右端点]
        i0 = -1
        for i, x in enumerate(nums):
            if x % k:  # 保证后续求的 GCD 都是 k 的倍数
                a = []
                i0 = i
                continue
			# x 为当前值
			# i 作为右边界
            a.append([x, i])
            # 原地去重,因为相同的 GCD 都相邻在一起
            j = 0
            for p in a:
                p[0] = gcd(p[0], x)
                if a[j][0] != p[0]:
                    j += 1
                    a[j] = p
                else:
                    a[j][1] = p[1]
            del a[j + 1:]
            if a[0][0] == k:  # a[0][0] >= k
                ans += a[0][1] - i0
        return ans

作者:灵茶山艾府
链接:https://leetcode.cn/problems/number-of-subarrays-with-gcd-equal-to-k/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

拓展

1237. 找出给定方程的正整数解

问题

给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) == z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。

尽管函数的具体式子未知,但它是单调递增函数,也就是说:

f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)

函数接口定义如下:

interface CustomFunction {
public:
  // Returns some positive integer f(x, y) for two positive integers x and y based on a formula.
  int f(int x, int y);
};

你的解决方案将按如下规则进行评判:

判题程序有一个由 CustomFunction 的 9 种实现组成的列表,以及一种为特定的 z 生成所有有效数对的答案的方法。
判题程序接受两个输入:function_id(决定使用哪种实现测试你的代码)以及目标结果 z 。
判题程序将会调用你实现的 findSolution 并将你的结果与答案进行比较。
如果你的结果与答案相符,那么解决方案将被视作正确答案,即 Accepted 。

提示:

1 <= function_id <= 9
1 <= z <= 100
题目保证 f(x, y) == z 的解处于 1 <= x, y <= 1000 的范围内。
在 1 <= x, y <= 1000 的前提下,题目保证 f(x, y) 是一个 32 位有符号整数。

解答

  1. 首先看到矩阵递增,便要想起 二分法,以 l = 0,r = matrix[-1][-1],不断二分,该算法会保证 mid 必定存在于矩阵中
  2. 由提示知:矩阵大小是常数 1000 * 1000,所以可以直接枚举
  3. 可以在每行中进行二分查找

代码:


拓展

  1. 1508. 子数组和排序后的区间和
  2. 378. 有序矩阵中第 K 小的元素
  3. 240. 搜索二维矩阵 II

标签:max,12,gcd,nums,int,18,mid,数组,2023
From: https://www.cnblogs.com/SpiritiualWander/p/17911772.html

相关文章

  • 《产品平台和CBB管理高级实务》公开课(深圳2024年1月12-13日)
    【课程收益】解决的关键问题:在研发体系建设、研发管理,以及产品开发过程中,研发管理人员、系统工程师、项目经理等通常会面临以下问题,希望通过本课程的学习,能够为以上人员提供具体的解决思路和应对措施。①.   为了满足不同用户的需求,长期积累下来的产品型号和物料种类繁......
  • python123——numpy、scipy、pandas、matplotlib的读书报告
     一、函数的基本用法numpyNumPy(NumericalPython)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nestedliststructure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的......
  • ClickHouse(18)ClickHouse集成ODBC表引擎详细解析
    目录创建表用法示例资料分享参考文章ODBC集成表引擎使得ClickHouse可以通过ODBC方式连接到外部数据库.为了安全地实现ODBC连接,ClickHouse使用了一个独立程序clickhouse-odbc-bridge.如果ODBC驱动程序是直接从clickhouse-server中加载的,那么驱动问题可能会导致ClickHouse服......
  • RK3568 android12 动态替换开机logo
    前言:最近客户有个需要,通过adbpush来动态替换开机logo。通过网上查阅相关资料,现整理如下。参考:RK3568Android/Linux系统动态更换U-Boot/KernelLogo解决方法:通过自定义一个分区来存储开机logo,这样在恢复出厂时不会丢失开机logo。然后通过修改u-boot/drivers/video/drm/rock......
  • 第18期|产业区块链一周快讯速览
    政策公告上海市发布《上海市促进外贸稳规模提质量的若干政策措施》4月3日,上海市人民政府办公厅关于印发《上海市促进外贸稳规模提质量的若干政策措施》的通知。提出探索上海口岸船公司、货代、进出口企业间保函交换无纸化试点。鼓励船公司和港口企业开展基于区块链技术的业务单证无......
  • 零数科技双平台入选2023爱分析·数据要素流通厂商全景报告
    全面近日,国内领先的数字化市场研究咨询机构爱分析正式发布《2023爱分析·数据要素流通厂商全景报告》,零数科技凭借成熟的区块链和隐私计算技术,及系列标杆产品及应用,成功入选数据要素流通代表厂商。图:零数科技入围爱分析数据要素厂商全景地图随着数字经济的崛起,数据成为推动社会生产......
  • 活动预告 | 2023CCF中国区块链技术与应用高峰论坛议程发布
    党的二十大报告明确提出要建设数字中国,加快发展数字经济。区块链作为数字经济的重要支撑技术,在不同行业领域中已得到了广泛应用,并深度赋能社会和经济发展。为进一步加快区块链技术与应用深度结合,促进区块链产业发展,驱动区块链更好赋能数字经济,由中国计算机学会(CCF)主办,CCF区块链专业......
  • 【WCH以太网接口系列芯片】CH9121\20的使用
    本篇文章将介绍沁恒微电子的以太网转接芯片CH9121(CH9120和CH9121使用上没有区别,注意配置工具不一样,可以在沁恒微电子官网自行下载测试),该芯片支持网口和串口相互透传,可以通过串口AT指令或网口工具进行快速配置,无需编程就能实现设备联网。如图1示,我们在使用CH9121Demo板时,......
  • (2023.12.18)wifi的频宽配置
    //网关设备上的WiFi问题单ht_capab:频宽可调HighThroughput高吞吐量能力参数VHT:VeryHighThroughput现在也叫WiFi5GuardInterval:保护间隔(无线提速参数)AX2和AX5:指的是2.4G频段和5G频段HT40+:次通道高于主通道HT40-:次通道低于主通道SHORT-GI-20:disabledifnotsetWPA2:体......
  • 参会指南 |WAIC 2023零数科技产业区块链生态论坛专业观众线下参会指引
    2023年7月7日(周五)13:00-17:00,由赛迪区块链研究院指导,上海零数科技有限公司主办的“数实融合,智领未来”产业区块链生态论坛,将于上海世博中心518会议室举行。论坛拟邀政府领导、院士学者、企业代表等重磅嘉宾,聚焦区块链赋能产业创新变革与实践应用,推动数字经济与实体经济深度融合。线......