首页 > 其他分享 >LGBM

LGBM

时间:2023-12-09 14:47:16浏览次数:32  
标签:plt LGBM value label ks tpr fpr

import pandas as pd
from lightgbm import LGBMClassifier
from sklearn.metrics import accuracy_score

df3=pd.concat([df1,df2],axis=1)

model = LGBMClassifier(learning_rate=0.05,num_leaves=29)
model.fit(x_train, y_train)
p=model.predict_proba(x_test)
m=pd.DataFrame(p)
n=m.iloc[:,1:]
from sklearn.metrics import roc_curve
label=y_test
score=n
fpr,tpr,thresholds= roc_curve(label,score)
ks_value = max(abs(fpr-tpr))

画图,画出曲线

plt.plot(fpr, label='bad')
plt.plot(tpr, label='good')
plt.plot(abs(fpr-tpr), label='diff')

标记ks

x = np.argwhere(abs(fpr-tpr) == ks_value)[0, 0]
plt.plot((x, x), (0, ks_value), label='ks - {:.2f}'.format(ks_value), color='r', marker='o', markerfacecolor='r', markersize=5)
plt.scatter((x, x), (0, ks_value), color='r')
plt.legend()
plt.show()

5.1调参
model =LGBMClassifier(learning_rate=0.05)
grid={'num_leaves':[28,29,30,32,35,40]}
gs=GridSearchCV(model,grid,cv=10)
gs.fit(x_train,y_train)

gs.best_score_

gs.best_params_

标签:plt,LGBM,value,label,ks,tpr,fpr
From: https://www.cnblogs.com/chenqianguan/p/17890919.html

相关文章

  • 数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGB
    全文链接:https://tecdat.cn/?p=34434原文出处:拓端数据部落公众号分析师:ShilinChen离职率是企业保留人才能力的体现。分析预测职员是否有离职趋向有利于企业的人才管理,提升组织职员的心理健康,从而更有利于企业未来的发展。解决方案任务/目标采用分类这一方法构建6种模型对职......
  • LGBM-1
    ##LGBM+sklearn#LightGBM建模,sklearn评估#coding:utf-8importlightgbmaslgbimportpandasaspdfromsklearn.metricsimportmean_squared_errorfromsklear......