首页 > 其他分享 >ThreadPoolExecutor线程池内部处理浅析

ThreadPoolExecutor线程池内部处理浅析

时间:2023-11-30 15:55:22浏览次数:44  
标签:corePoolSize int 任务 线程 null 浅析 ThreadPoolExecutor

我们知道如果程序中并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束时,会因为频繁创建线程而大大降低系统的效率,因此出现了线程池的使用方式,它可以提前创建好线程来执行任务。本文主要通过java的ThreadPoolExecutor来查看线程池的内部处理过程。

1 ThreadPoolExecutor

java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,下面我们来看一下ThreadPoolExecutor类的部分实现源码。

1.1 构造方法

ThreadPoolExecutor类提供了如下4个构造方法

// 设置线程池时指定核心线程数、最大线程数、线程存活时间及等待队列。
// 线程创建工厂和拒绝策略使用默认的(AbortPolicy)
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         Executors.defaultThreadFactory(), defaultHandler);
}

// 设置线程池时指定核心线程数、最大线程数、线程存活时间、等待队列及线程创建工厂 
// 拒绝策略使用默认的(AbortPolicy)
public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
         threadFactory, defaultHandler);
}

// 设置线程池时指定核心线程数、最大线程数、线程存活时间、等待队列及拒绝策略
// 线程创建工厂使用默认的
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
   }
// 设置线程池时指定核心线程数、最大线程数、线程存活时间、等待队列、线程创建工厂及拒绝策略
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

通过观察上述每个构造器的源码实现,我们可以发现前面三个构造器都是调用的第四个构造器进行的初始化工作。

下面解释一下构造器中各个参数的含义:

  • corePoolSize:核心池的线程个数上线,在创建了线程池后,默认情况下,线程池中并没有任何线程,而是等待有任务到来才创建线程去执行任务。默认情况下,在创建了线程池后,线程池中的线程数为0,当有任务来之后,就会创建一个线程去执行任务,当线程池中的线程数目达到corePoolSize后,就会把到达的任务放到缓存队列当中。
  • maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程。
  • keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0。
  • unit:参数keepAliveTime的时间单位。
  • workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响;
  • threadFactory:线程工厂,主要用来创建线程;
  • handler:表示当拒绝处理任务时的策略。有以下四种取值:ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。 ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。 ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务。

1.2 核心方法

在ThreadPoolExecutor类中,最核心的任务提交方法是execute()方法,虽然通过submit也可以提交任务,但是实际上submit方法里面最终调用的还是execute()方法。

 public void execute(Runnable command) {
        // 判断提交的任务command是否为null,若是null,则抛出空指针异常;
        if (command == null)
            throw new NullPointerException();
        // 获取线程池中当前线程数
        int c = ctl.get();
        // 如果线程池中当前线程数小于核心池大小,进入if语句块
        if (workerCountOf(c) < corePoolSize) {
            // 如果以给定的命令启动一个核心线程执行任务成功,直接返回
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 如果当前线程池处于RUNNING状态,则将任务放入任务缓存队列
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 如果线程池不处于运行状态并且移除刚加入的任务成功则执行拒绝策略
            if (! isRunning(recheck) && remove(command))
                reject(command);
            // 如果当前线程数为0,则在线程池里增加一个线程,保证队列里的任务不会没有线程执行
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        } 
        // 尝试启动核心线程之外的线程,如果不满足,则执行对应的拒绝策略
        else if (!addWorker(command, false))
            reject(command);
    }

主要方法addWorker。

private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // 如果线程池状态大于SHUTDOWN或者线程池状态等于SHUTDOWN,firstTask不等于null
            // 或者线程池状态等于SHUTDOWN,任务队列等于空时,直接返回false结束。
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                // 如果线程数量大于等于最大数量或者大于等于上限
                //(入参core传true,取核心线程数,否则取最大线程数),直接返回false结束。
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false
                // CAS操作给工作线程数加1,成功则跳到retry处,不再进入循环。
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                // 如果线程池状态与刚进入时不一致,则跳到retry处,再次进入循环
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 新建一个线程
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {

                    int rs = runStateOf(ctl.get());
                    // 如果线程池状态在SHUTDOWN之前或者
                    // 线程池状态等于SHUTDOWN并且firstTask等于null时,进入处理。
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        // 如果要执行的线程正在运行,则抛异常
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    // 启动线程
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            // 如果线程添加失败,则将新增的对应信息删除
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

1.3 任务执行run方法

在上述addWorker中,当调用线程的start方法启动线程后,会执行其中的run方法。

public void run() {
            runWorker(this);
        }

final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            // 如果任务不为空或者新获取到的任务不为空
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // 当线程池状态,大于等于 STOP 时,保证工作线程都有中断标志。
                // 当线程池状态,小于STOP时,保证工作线程都没有中断标志。
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        // 执行任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

2 整体处理过程

通过上述源码分析,我们可以得出线程池处理任务的过程如下:

3 总结

本文从源码层面主要分析了线程池的创建、运行过程,通过上述的分析,可以看出当线程池中的线程数量超过核心线程数后,会先将任务放入等待队列,队列放满后当最大线程数大于核心线程数时,才会创建新的线程执行。

作者:京东物流 管碧强

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

标签:corePoolSize,int,任务,线程,null,浅析,ThreadPoolExecutor
From: https://www.cnblogs.com/Jcloud/p/17866942.html

相关文章

  • java线程池管理工具类
    1,这是线程池管理工具类,在系统关闭时确保任务执行完毕,自定义线程名字,自定义抛弃策略默认使用了CallerRunsPolicy拒绝策略importjava.util.concurrent.ExecutorService;importjava.util.concurrent.LinkedBlockingQueue;importjava.util.concurrent.ThreadFactory;importja......
  • Qt主线程和子线程协作更新UI
    一、概述现有一个需求:Qt+OpenCV执行角点检测。使用Qt当做UI界面进行角点检测。我们知道像角点检测这种算法需要大量的计算,是比较耗时的一个操作。如果把计算+UI显示全放入主线程中计算,那么UI界面有可能就会卡主,进而出现应用程序无响应的情况。要求:使......
  • jdk21-虚拟线程
    jdk文档:https://openjdk.org/jeps/444关键内容整理虚拟线程是轻量级线程,可显著减少编写、维护和观察高吞吐量并发应用程序的工作量。默认情况下,直接使用API创建的虚拟线程(而不是通过创建的虚拟线程)现在也会在其整个生命周期内受到监视,并且可以通过观察虚拟线程部分......
  • 主线程如何获取子线程异常
    主线程如何获取子线程异常常规情况:一般我们没有办法通过主线程去获取子线程的异常举个例子:publicclasstest11_29{publicstaticvoidmain(String[]args){try{Threadthread=newThread(newmyExceptionRunner());thread.star......
  • MySQL Shell连接数据库报MySQL Error 1045 (28000)错误浅析
    这里简单总结一下mysqlshell访问数据库时报MySQLError1045(28000):Accessdeniedforuser'root'@'::1'(usingpassword:YES)的原因以及如何解决这个问题这里测试的环境为MySQL8.0.35,我们先来看看报错案例:$mysqlsh-hlocalhost-P7306-uroot-pPleaseprovidethep......
  • 发烧平台完全是AMD的天下!32核心线程撕裂者者7970X评测:内容创作性价比之选
    一、前言:32核心的线程撕裂者7970X11月20日,AMD正式发布了Zen4架构的线程撕裂者处理器,成为了无可争议的最强处理器,我们快科技也同步带来了HEDT发烧平台旗舰型号,64核心128线程线程撕裂者7980X的首发评测。除了线程撕裂者7980X之外,AMD同时还发布了32核心的线程撕裂者7970X、24核心......
  • 线程池
    线程池线程池简介线程池(threadpool):一种线程的使用模式。线程过多会带来调度的开销,进而影响局部和整体性能。而线程池维护多个线程,等待着监督管理者分派并发执行的任务。这避免了在处理短时间任务时创建和销毁线程的代价。线程池不仅能够保证内核的充分使用,还能防止过分调度线......
  • ElasticSearch之线程池
    ElasticSearch节点可用的CPU核的数量,通常可以交给ElasticSearch来自行检测和判定,另外可以在``elasticsearch.yml`中显式指定。样例如下:node.processors:2如下表格中的processors即CPU核的数量。线程池的列表线程池名称类型线程数量队列长度用途genericscaling......
  • py02-python之线程
    1、线程:(1)讲程是分配资源的最小单位,一旦创建一个进程就会分配一定的资源,就像两个人聊OQ就需要打开两个QQ软件一样,是比较浪费资源的。线程是程序执行的最小单位,实际上进程只负责分配资源,而利用这些资源执行程序的是线程,也就说进程是线程的容器,一个进程中最少有一个线程来负责执行......
  • Java多线程转账
    Java多线程转账关键词:多线程,Java以前的一道面试题,要求是使用Java多线程,实现一个转账业务。不考虑数据库,不考虑其他第三方系统。只考虑当前Java程序内各个账户进行转账,保证转账金额正确性和转账功能效率。想起那大约还是两年前,是线上面试,面试官给完题目就关闭视频通话,让我自己去......