一、Reactor模式
Reactor 翻译过来的意思是「反应堆」,这里的反应指的是「对事件反应」,也就是来了一个事件,Reactor 就有相对应的反应/响应。
事实上,Reactor 模式也叫 Dispatcher
模式,我觉得这个名字更贴合该模式的含义,即 I/O 多路复用监听事件,收到事件后,根据事件类型分配(Dispatch)给某个进程 / 线程。
Reactor 模式主要由 Reactor 和处理资源池这两个核心部分组成,它俩负责的事情如下:
- Reactor 负责监听和分发事件,事件类型包含连接事件、读写事件;
- 处理资源池负责处理事件,如 read -> 业务逻辑 -> send;
Reactor 模式是灵活多变的,可以应对不同的业务场景,灵活在于:
- Reactor 的数量可以只有一个,也可以有多个;
- 处理资源池可以是单个进程 / 线程,也可以是多个进程 /线程;
将上面的两个因素排列组设一下,理论上就可以有 4 种方案选择:
- 单 Reactor 单进程 / 线程;
- 单 Reactor 多进程 / 线程;
- 多 Reactor 单进程 / 线程;
- 多 Reactor 多进程 / 线程;
其中,「多 Reactor 单进程 / 线程」实现方案相比「单 Reactor 单进程 / 线程」方案,不仅复杂而且也没有性能优势,因此实际中并没有应用。
因此下面主要介绍三个比较经典的模型。
1.单 Reactor 单进程 / 线程
示意图如下:
可以看到进程里有 Reactor、Acceptor、Handler 这三个对象:
- Reactor 对象的作用是监听和分发事件;
- Acceptor 对象的作用是获取连接;
- Handler 对象的作用是处理业务;
对象里的 select、accept、read、send 是系统调用函数,dispatch 和 「业务处理」是需要完成的操作,其中 dispatch 是分发事件操作。
接下来,介绍下「单 Reactor 单进程」这个方案:
- Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
- 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
- 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
- Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。
单 Reactor 单进程的方案因为全部工作都在同一个进程内完成,所以实现起来比较简单,不需要考虑进程间通信,也不用担心多进程竞争。
但是,这种方案存在 2 个缺点:
- 第一个缺点,因为只有一个进程,无法充分利用 多核 CPU 的性能;
- 第二个缺点,Handler 对象在业务处理时,整个进程是无法处理其他连接的事件的,如果业务处理耗时比较长,那么就造成响应的延迟;
2.单 Reactor 多进程 / 线程
如果要克服「单 Reactor 单线程 / 进程」方案的缺点,那么就需要引入多线程 / 多进程,这样就产生了单 Reactor 多线程 / 多进程的方案。
单 Reactor 单线程 / 进程示意图如下:
详细说一下这个方案:
- Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
- 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
- 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
上面的三个步骤和单 Reactor 单线程方案是一样的,接下来的步骤就开始不一样了:
- Handler 对象不再负责业务处理,只负责数据的接收和发送,Handler 对象通过 read 读取到数据后,会将数据发给子线程里的 Processor 对象进行业务处理;
- 子线程里的 Processor 对象就进行业务处理,处理完后,将结果发给主线程中的 Handler 对象,接着由 Handler 通过 send 方法将响应结果发送给 client;
单 Reator 多线程的方案优势在于能够充分利用多核 CPU 的能,那既然引入多线程,那么自然就带来了多线程竞争资源的问题。因此就需要编码时进行加锁保护共享资源。
另外,「单 Reactor」的模式还有个问题,因为一个 Reactor 对象承担所有事件的监听和响应,而且只在主线程中运行,在面对瞬间高并发的场景时,容易成为性能的瓶颈的地方。
3.多 Reactor 多进程 / 线程
要解决「单 Reactor」的问题,就是将「单 Reactor」实现成「多 Reactor」,这样就产生了第 多 Reactor 多进程 / 线程的方案。
示意图如下:
方案详细说明如下:
- 主线程中的 MainReactor 对象通过 select 监控连接建立事件,收到事件后通过 Acceptor 对象中的 accept 获取连接,将新的连接分配给某个子线程;
- 子线程中的 SubReactor 对象将 MainReactor 对象分配的连接加入 select 继续进行监听,并创建一个 Handler 用于处理连接的响应事件。
- 如果有新的事件发生时,SubReactor 对象会调用当前连接对应的 Handler 对象来进行响应。
- Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。
多 Reactor 多线程的方案虽然看起来复杂的,但是实际实现时比单 Reactor 多线程的方案要简单的多,原因如下:
- 主线程和子线程分工明确,主线程只负责接收新连接,子线程负责完成后续的业务处理。
- 主线程和子线程的交互很简单,主线程只需要把新连接传给子线程,子线程无须返回数据,直接就可以在子线程将处理结果发送给客户端。
二、Proactor
前面提到的 Reactor 是非阻塞同步网络模式,而 Proactor 是异步网络模式。
先来看看阻塞 I/O,当用户程序执行 read
,线程会被阻塞,一直等到内核数据准备好,并把数据从内核缓冲区拷贝到应用程序的缓冲区中,当拷贝过程完成,read
才会返回。
注意,阻塞等待的是「内核数据准备好」和「数据从内核态拷贝到用户态」这两个过程。过程如下图:
知道了阻塞 I/O ,来看看非阻塞 I/O,非阻塞的 read 请求在数据未准备好的情况下立即返回,可以继续往下执行,此时应用程序不断轮询内核,直到数据准备好,内核将数据拷贝到应用程序缓冲区,read
调用才可以获取到结果。过程如下图:
注意,这里最后一次 read 调用,获取数据的过程,是一个同步的过程,是需要等待的过程。这里的同步指的是内核态的数据拷贝到用户程序的缓存区这个过程。因此这并不是真正的异步I/O。
而真正的异步 I/O 是「内核数据准备好」和「数据从内核态拷贝到用户态」这两个过程都不用等待。
当我们发起 aio_read
(异步 I/O) 之后,就立即返回,内核自动将数据从内核空间拷贝到用户空间,这个拷贝过程同样是异步的,内核自动完成的,和前面的同步操作不一样,应用程序并不需要主动发起拷贝动作。过程如下图:
阻塞I/O 需要一直等在阻塞的发生点,直到满足条件才会结束。
非阻塞I/O 可以不用等待,继续向下执行,但在系统准备数据的时候,是需要等待的。
异步I/O 啥都不用等直接向下执行即可。
Proactor 正是采用了异步 I/O 技术,所以被称为异步网络模型。
现在我们再来理解 Reactor 和 Proactor 的区别,就比较清晰了。
- Reactor 是非阻塞同步网络模式,感知的是就绪可读写事件。在每次感知到有事件发生(比如可读就绪事件)后,就需要应用进程主动调用 read 方法来完成数据的读取,也就是要应用进程主动将 socket 接收缓存中的数据读到应用进程内存中,这个过程是同步的,读取完数据后应用进程才能处理数据。
- Proactor 是异步网络模式, 感知的是已完成的读写事件。在发起异步读写请求时,需要传入数据缓冲区的地址(用来存放结果数据)等信息,这样系统内核才可以自动帮我们把数据的读写工作完成,这里的读写工作全程由操作系统来做,并不需要像 Reactor 那样还需要应用进程主动发起 read/write 来读写数据,操作系统完成读写工作后,就会通知应用进程直接处理数据。
因此,Reactor 可以理解为「来了事件操作系统通知应用进程,让应用进程来处理」,而 Proactor 可以理解为「来了事件操作系统来处理,处理完再通知应用进程」。这里的「事件」就是有新连接、有数据可读、有数据可写的这些 I/O 事件这里的「处理」包含从驱动读取到内核以及从内核读取到用户空间。
无论是 Reactor,还是 Proactor,都是一种基于「事件分发」的网络编程模式,区别在于 Reactor 模式是基于「待完成」的 I/O 事件,而 Proactor 模式则是基于「已完成」的 I/O 事件。
介绍一下 Proactor 模式的工作流程:
- Proactor Initiator 负责创建 Proactor 和 Handler 对象,并将 Proactor 和 Handler 都通过 Asynchronous Operation Processor 注册到内核;
- Asynchronous Operation Processor 负责处理注册请求,并处理 I/O 操作;
- Asynchronous Operation Processor 完成 I/O 操作后通知 Proactor;
- Proactor 根据不同的事件类型回调不同的 Handler 进行业务处理;
- Handler 完成业务处理;
可惜的是,在 Linux 下的异步 I/O 是不完善的, aio
系列函数是由 POSIX 定义的异步操作接口,不是真正的操作系统级别支持的,而是在用户空间模拟出来的异步,并且仅仅支持基于本地文件的 aio 异步操作,网络编程中的 socket 是不支持的,这也使得基于 Linux 的高性能网络程序都是使用 Reactor 方案。
而 Windows 里实现了一套完整的支持 socket 的异步编程接口,这套接口就是 IOCP
,是由操作系统级别实现的异步 I/O,真正意义上异步 I/O,因此在 Windows 里实现高性能网络程序可以使用效率更高的 Proactor 方案。