首页 > 其他分享 >手把手教你yolov5训练自己的数据集(代码+教程)

手把手教你yolov5训练自己的数据集(代码+教程)

时间:2023-11-16 22:05:29浏览次数:55  
标签:yolov5 自定义 训练 手把手 模型 教程 我们 YOLOv5 代码

在这篇博文中,我们对YOLOv5模型进行微调,用于自定义目标检测的训练和推理。

目录

引言: YOLOv5是什么?

YOLOv5提供的模型

YOLOv5提供的功能

使用YOLOv5进行自定义目标检测训练

自定义训练的方法 自定义训练代码

准备数据集

克隆YOLOv5存储库

训练小模型(yolov5s)

训练YOLOv5中型模型

冻结层训练中型YOLOv5模型

性能比较

结论

引言:

深度学习领域在2012年开始快速发展。在那个时候,这个领域还比较独特,编写深度学习程序和软件的人要么是深度学习实践者,要么是在该领域有丰富经验的研究人员,或者是具备优秀编码技能的人。

而现在,仅过去10年左右,情况已经发生了巨大变化,而且变得更好。现在,只需要学习了几周的学生就可以用不到20行代码训练一个神经网络模型。而且,这不仅仅是在基准数据集上进行训练,我们可以使用一些最好的模型来训练自定义数据集。不相信吗?好的,那么我们就在这篇文章中使用YOLOV5进行自定义目标检测训练,来证明这一点。

YOLOv5是什么?

如果你在机器学习和深度学习领域已经有一段时间了,很有可能你已经听说过YOLO。YOLO是You Only Look Once的缩写。它是一系列基于单阶段深度学习的目标检测器。它们能够以超过实时的速度进行目标检测,并具有最先进的准确性。

在Darknet框架中,官方发布了四个版本。

YOLOv5是一种用于目标检测的深度学习模型。它是YOLO(You Only Look Once)系列的下一代版本,采用了PyTorch框架,并由Ultralytics组织在GitHub上开发。YOLOv5包含了多种不同大小和准确性的模型,适用于各种场景和设备。

YOLOv5一共有五个模型,

包括:

  • YOLOv5n:最小的nano模型,适用于边缘设备、物联网设备和具有OpenCV DNN支持的环境。
  • YOLOv5s:小型模型,适合在CPU上进行推断。
  • YOLOv5m:中等大小的模型,是速度和准确性之间的平衡点,适用于许多数据集和训练任务。
  • YOLOv5l:大型模型,适用于需要检测较小物体的数据集。
  • YOLOv5x:最大的模型,拥有最高的mAP指标,但相对较慢,参数数量为86.7百万。

使用YOLOv5进行自定义目标检测训练的方法如下:

  1. 准备数据集:包括标注好的图像和对应的标签文件。
  2. 克隆YOLOv5仓库:从GitHub上获取YOLOv5代码和预训练模型。
  3. 使用训练代码:根据需要选择合适的模型进行训练,并设置训练参数和路径。
  4. 运行训练:执行训练代码开始模型训练,可以根据需求选择使用GPU或CPU进行训练。
  5. 检查性能:比较不同模型的mAP、FPS和推断时间,评估训练结果。

总之,YOLOv5是一种强大的目标检测模型,在深度学习领域有着广泛的应用。它提供了多个模型可供选择,可以根据需求进行定制化训练,并能在不同设备上进行高效的目标检测。

训练自己的数据

具体来说,本文提到了使用YOLOv5进行自定义目标检测训练的步骤,并使用了Vehicle-OpenImages数据集作为示例。

mosaic数据增强

手把手教你yolov5训练自己的数据集(代码+教程)_yolo训练自己的数据集

数据集包含439张用于训练的图像,125张用于验证,以及63张用于测试。但在本文中,我们只会使用训练和验证集。在继续之前,这里有几张图像,上面画有真实框的标注。

手把手教你yolov5训练自己的数据集(代码+教程)_yolo训练自己的数据集_02

自定义训练的方法

让我们看一下使用YOLOv5进行自定义训练时我们将涵盖的内容。

我们将从训练小型YOLOv5模型开始。 然后我们将训练中型模型,并与小型模型进行比较,看是否有改进。 接下来,我们将冻结中型模型的几层,然后再次训练模型。 我们将在上述所有情况下进行推断,并比较推断视频过程中的mAP指标和FPS。 自定义训练代码 让我们开始编码部分。所有的代码都包含在一个Jupyter笔记本中,你可以从下载部分获取。

在这里,我们将介绍所有必要和重要的代码部分。包括:

准备数据集。

按照上面讨论的方法训练三个模型。 性能比较。 对图像和视频进行推断。 让我们仔细研究代码的所有重要部分,从导入我们在笔记本中使用的模块和库开始。

准备数据集 下一步是下载和准备数据集。我们需要一个简单的辅助函数来下载数据集并解压

if not os.path.exists('train'):#论文辅导、代码获取,作业帮助Qq——1309399183
    !curl -L "https://public.roboflow.com/ds/xKLV14HbTF?key=aJzo7msVta" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip
     
    dirs = ['train', 'valid', 'test']
 
    for i, dir_name in enumerate(dirs):
        all_image_names = sorted(os.listdir(f"{dir_name}/images/"))
        for j, image_name in enumerate(all_image_names):
            if (j % 2) == 0:
                file_name = image_name.split('.jpg')[0]
                os.remove(f"{dir_name}/images/{image_name}")
                os.remove(f"{dir_name}/labels/{file_name}.txt")

数据结构如下

├── test
│   ├── images
│   └── labels
├── train
│   ├── images
│   ├── labels
│   └── labels.cache
├── valid
│   ├── images
│   ├── labels
│   └── labels.cache
├── data.yaml
├── README.dataset.txt
└── README.roboflow.txt

配置文件YAML设置

YOLOv5训练中最重要的一个属性可能是数据集的YAML文件。该文件包含训练和验证数据的路径,以及类别名称。在执行训练脚本时,我们需要将此文件路径作为参数提供,以便脚本可以识别图像路径、标签路径和类别名称。数据集已经包含了这个文件。以下是我们在这里用于训练的data.yaml文件的内容

train: ../train/images
val: ../valid/images
nc: 5
names: ['Ambulance', 'Bus', 'Car', 'Motorcycle', 'Truck']

克隆代码

为了使用YOLOv5代码库的任何功能,我们需要克隆他们的存储库。以下几行代码克隆了存储库,进入yolov5目录,并安装我们可能需要运行代码的所有要求

if not os.path.exists('yolov5'):
    !git clone https://ultralytics/yolov5.git
%cd yolov5/
!pip install -r requirements.txt

训练

现在,让我们一起了解训练脚本的所有参数。

--data:该参数接受我们之前创建的数据集YAML文件的路径。在我们的情况下,它是当前目录的上一级目录,因此为 ../data.yaml。 --weights:该参数接受我们想要用于训练的模型。由于我们使用YOLOv5系列中的小型模型,因此值为 yolov5s.pt。 --img:我们还可以在训练时控制图像大小。在将图像馈送到网络之前,图像将被调整为此值。我们将它们调整为640个像素,这也是最常用的尺寸之一。 --epochs:该参数用于指定训练的epoch数。由于我们已经在上面的EPOCHS变量中指定了epoch数,因此我们在此提供该变量。 --batch-size:这是在训练时将加载到一个批次中的样本数。虽然这里的值为16,但你可以根据可用的GPU内存进行更改。 --name:我们可以提供一个自定义目录名称,其中将保存所有结果。在我们的情况下,我们提供了刚刚通过调用set_res_dir函数创建的路径。

训练结果

Images     Labels          P          R     [email protected] mAP@
                 all        125        227      0.149      0.211     0.0944     0.0305
...
Epoch   gpu_mem       box       obj       cls    labels  img_size
     24/24     3.94G   0.03121   0.01958  0.009307        21       640: 100%|███
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        125        227      0.655      0.515      0.587       0.41
 
25 epochs completed in 0.190 hours.
Optimizer stripped from runs/train/results_4/weights/last.pt, 14.5MB
Optimizer stripped from runs/train/results_4/weights/best.pt, 14.5MB
 
Validating runs/train/results_4/weights/best.pt...
Fusing layers... 
Model summary: 213 layers, 7023610 parameters, 0 gradients
               Class     Images     Labels          P          R     [email protected] mAP@
                 all        125        227      0.514      0.646      0.588       0.41
           Ambulance        125         32      0.541      0.812      0.741      0.605
                 Bus        125         23      0.586      0.739      0.714      0.502
                 Car        125        119      0.521       0.58      0.531       0.34
          Motorcycle        125         23      0.668      0.699      0.659      0.397
               Truck        125         30      0.254        0.4      0.296      0.20

评价指标展示

手把手教你yolov5训练自己的数据集(代码+教程)_人工智能_03

推理结果展示

在训练过程中,代码库会将每个epoch的验证批次的预测保存到结果目录中。在我们查看这些预测之前,让我们编写一个辅助函数来找到结果目录中的所有验证预测并展示它们

#论文辅导、代码获取,作业帮助Qq——1309399183
def show_valid_results(RES_DIR):
    !ls runs/train/{RES_DIR}
    EXP_PATH = f"runs/train/{RES_DIR}"
    validation_pred_images = glob.glob(f"{EXP_PATH}/*_pred.jpg")
    print(validation_pred_images)
    for pred_image in validation_pred_images:
        image = cv2.imread(pred_image)
        plt.figure(figsize=(19, 16))
        plt.imshow(image[:, :, ::-1])
        plt.axis('off')
        plt.show()

手把手教你yolov5训练自己的数据集(代码+教程)_计算机视觉_04

mAP比较

手把手教你yolov5训练自己的数据集(代码+教程)_数据集_05

结论

在本文中,我们进行了许多使用YOLOv5进行训练和推理的实验。我们从使用YOLOv5小型模型进行自定义对象检测训练和推理开始。然后,我们转向YOLOv5中型模型的训练,还尝试了部分冻结层的中型模型训练。本文让我们深入了解了YOLOv5代码库的工作原理,并了解了不同模型之间的性能和速度差异。

论文辅导、代码获取,作业帮助可私信

鉴于本文中进行的大量实验,你是否注意到了什么?除了一些通用的Python函数外,我们没有编写任何深度学习代码。这表明深度学习领域变得越来越易于访问,希望未来也会朝着同样的方向发展。如果你尝试在自己的数据集上进行自定义训练并发现有趣的结果,请不要忘记在评论区分享你的成果。

标签:yolov5,自定义,训练,手把手,模型,教程,我们,YOLOv5,代码
From: https://blog.51cto.com/u_15656617/8432371

相关文章

  • 无涯教程-Dart - Optional Parameters with Default Values函数
    默认情况下,还可以为函数参数分配值,但是,此类参数也可以是显式传递的值。语法function_name(param1,{param2=default_value}){//......}示例voidmain(){test_param(123);}voidtest_param(n1,{s1:12}){print(n1);print(s1);}它应该返回......
  • 无涯教程-Dart - Optional named parameter函数
    与位置参数不同,必须在传递值时指定参数名称,花括号{}可用于指定可选的命名参数。语法 - 声明函数voidfunction_name(a,{optional_param1,optional_param2}){}语法 - 调用函数function_name(optional_param:value,…);示例voidmain(){test_param(123);......
  • 无涯教程-Dart - Optional Positional Parameter函数
    要指定可选的位置参数,请使用方括号[]。语法voidfunction_name(param1,[optional_param_1,optional_param_2]){}如果未传递可选参数的值,则将其设置为NULL。示例voidmain(){test_param(123);}test_param(n1,[s1]){print(n1);print(s1);}它......
  • 爱芯元智AX650N部署yolov5 自定义模型
    爱芯元智AX650N部署yolov5s自定义模型本博客将向你展示零基础一步步的部署好自己的yolov5s模型(博主展示的是安全帽模型),利用yolov5官方的代码工具导出onnx模型,并通过onnxsim自带的工具精简网络结构,导出子图,为了Pulsar2工具进行处理模型做准备。获得自定义训练得到的yolov5s......
  • 无涯教程-Dart - Parameterized Function函数
    参数是一种将值传递给函数的机制,参数是函数签名的一部分,参数值在调用过程中传递给函数,除非明确指定,否则传递给函数的值的数量必须与定义的参数的数量匹配。语法Function_name(data_typeparam_1,data_typeparam_2[…]){//statements}示例voidmain(){test_pa......
  • 无涯教程-Dart - clear()函数
    从Map上删除所有数据。clear-语法Map.clear()clear-示例voidmain(){Mapm={'name':'Learnfk','Id':'E1001'};print('Map:${m}');m.clear();print('Mapafterinvokingclear():${m}');......
  • 无涯教程-Dart - addAll()函数
    Map.addAll()函数将所有其他的键/值对添加到此Map。addAll-语法Map.addAll(Map<K,V>other)other-代表一个键值对。addAll-示例voidmain(){Mapm={'name':'Learnfk','Id':'E1001'};print('Map:${m}');m.add......
  • 第8期ThreadX视频教程:应用实战,将裸机工程移植到RTOS的任务划分,驱动和应用层交互,中断DM
     这个是我们初学RTOS面临的最直接问题,很多时候,简单的RTOS机制明白了,API也会调用了,就是添加到RTOS后,总感觉那里不对劲,怎么使用才是正确姿势。针对这些问题,本期视频教程,我们ThreadX内核教程穿插一期实战应用。使用RTOS要充分发挥其高效的多任务管理机制和实时性,这样也是我们采用RTOS......
  • 嵌入式系统设计教程(第二版)学习总结1
    计算机系统基础知识1.数据表示 对于任何一种进位计数制,都可以多项式展开;1.10进制转2进制:整数部分“除2取余”,小数部分“乘2取整”   2.二进制,十六进制,八进制之间的对应关系: 3.数值型数据表示:无符号数:全部二进制位表示数值,没有符号位有符号数:最高位0表示正数,1表......
  • NCCL下载及安装教程
    1、查看cuda版本whichcuda12、在确定cuda版本之后,注册并登录英伟达官网,查找指定cuda版本的NCCL软件;管网链接:https://developer.nvidia.com/nccl/nccl-legacy-downloads指定版本为:不确定系统,本地安装 3、下载到本地之后,压缩包文件名为:nccl_2.6.4-1+cuda10.0_ppc64le.txz解......