首页 > 其他分享 >【scipy 基础】--插值

【scipy 基础】--插值

时间:2023-11-07 10:11:22浏览次数:38  
标签:plt -- 插值 算法 scipy df np 数据

插值运算是一种数据处理方法,主要用来填补数据之间的空白或缺失值。
因为在实际应用中,数据往往不是完整的,而是存在着空白或缺失值,这些空白或缺失值可能是由于数据采集困难、数据丢失或数据处理错误等原因造成的。
如果直接使用这些空白或缺失值进行分析和预测,将会对结果造成很大的影响。

插值运算可以用来填补这些空白或缺失值,从而恢复完整的数据集。
通过插值运算,可以估算出空白或缺失值的值,从而提高数据的完整性和准确性。
此外,插值运算还可以用来预测未来的数据趋势或结果,对于数据分析和预测具有重要的意义。

本篇介绍Scipy为我们提供的插值处理方法。

1. 主要功能

Scipy中,关于插值的子模块是:scipy.interpolate
其中又细分为:

类别 说明
单变量插值 主要包含interp1d等12个函数
多变量插值 主要包含griddata等11个函数
一维样条函数 主要包含BSpline等16个函数
二维样条函数 主要包含RectBivariateSpline等9个函数
其他函数 一些辅助计算的函数

插值效果的好坏,有个重要的因素在于是否根据数据的情况选择了合适的插值算法。
Scipy库中已经实现的插值算法有:

  1. linear:线性插值算法
  2. nearest:最近邻插值算法
  3. nearest-up:改进型最近邻插值算法
  4. zero:零阶样条插值算法(等同于 previous
  5. slinear:一阶样条插值算法(等同于 linear
  6. quadratic:五阶样条插值算法
  7. cubic:三阶样条插值算法
  8. previous:前点插值算法
  9. next:后点插值算法

我们可以根据数据情况选择合适的算法,下面用一些测试数据演示不同算法的插值效果:

from scipy.interpolate import interp1d

x = np.linspace(0, 20, 20)
y = x * np.cos(x)
plt.scatter(x,y)
plt.show()

image.png
上图是插值之前,直接由20个数据点连接起来的折线。

接下来,应用9种不同的插值算法将20个点补充为100个点,然后看看插值之后各种曲线的效果。

interp_types = [
    "linear",
    "nearest",
    "nearest-up",
    "zero",
    "slinear",
    "quadratic",
    "cubic",
    "previous",
    "next",
]

fig = plt.figure(figsize=[12, 9])
fig.subplots_adjust(hspace=0.4)

for idx, typ in enumerate(interp_types):
    f = interp1d(x, y, kind=typ)
    x_dense = np.linspace(0, 20, 100)
    y_dense = f(x_dense)

    ax = fig.add_subplot(330 + idx+1)
    ax.scatter(x, y)
    ax.plot(x_dense, y_dense, color='g')
    ax.set_title("插值算法-{}".format(typ))


plt.show()

image.png

2. 一维插值示例

在我自己实际接触的项目中,气象数据的处理经常会用到插值。
因为气象数据常常存在缺失值,这可能是由于传感器故障,数据传输问题,或者在某些情况下,由于天气现象使得数据无法收集。
对于这些缺失值,我们可以使用Scipy的一维插值功能来进行填充。

比如下面是南京市某年的各个月的平均气温:

import pandas as pd

# 南京一年中每个月平均气温
df = pd.DataFrame({
    "月份": ["一月", "二月", "三月", 
           "四月", "五月", "六月", 
           "七月", "八月", "九月", 
           "十月", "十一月", "十二月"],
    "平均最低气温": [-1.6, 0.0, 4.4, 
               np.nan, 15.7, 20.4, 
               np.nan, 24.6, 19.1, 
               12.6, 6.1, -0.1],
    "平均最高气温": [7.0, 8.4, np.nan, 
               20.1, 25.3, 29.0, 
               32.0, 32.2, 27.2, 
               np.nan, 16.9, 9.7],
})

df

image.png
由于采集或者传输的原因,导致缺失了一些数据。
这样的数据不仅绘制出来的折线图会有断开的地方,而且不利于后续的分析。

plt.plot(df["月份"], df["平均最低气温"], label="平均最低气温")
plt.plot(df["月份"], df["平均最高气温"], label="平均最高气温")
plt.legend()

plt.show()

image.png

这时,可以用Scipy的插值算法来补充缺失数据。

from scipy.interpolate import interp1d

# 过滤掉缺失的 平均最低气温 数据
df_low =df[df["平均最低气温"].notna()]
# 根据已有的数据生成插值函数
f = interp1d(df_low.index, df_low["平均最低气温"], kind="cubic")
# 用插值函数补充缺失数据
df["平均最低气温"] = f(range(12))

# 平均最高气温 的缺失数据处理同上
df_high =df[df["平均最高气温"].notna()]
f = interp1d(df_high.index, df_high["平均最高气温"], kind="cubic")
df["平均最高气温"] = f(range(12))

df.round(1)

plt.plot(df["月份"], df["平均最低气温"], label="平均最低气温")
plt.plot(df["月份"], df["平均最高气温"], label="平均最高气温")
plt.legend()

plt.show()

image.png
处理之后,数据的连续性更好了。

3. 二维插值示例

当自变量有2个的时候,就要用到二维插值了。
仍然以气象上的数据举例,上面示例是气温和时间的关系,我们把时间作为自变量,只要一维插值即可。
如果是和地点关联的话,那么地点作为自变量就有2个值(一般是经度和纬度)。

比如下面截取了项目中一段降水量的数据:

# 数据是二维数组:
# 每一行代表经度相同,纬度不同的地点
# 每一列代表纬度相同,经度不同的地点
data = np.array([
    [9, 9, 5, 9, 10, 9, 8, 7, 11, 1],
    [54, 36, 54, 32, 46, 51, 35, 33, 36, 11],
    [35, 34, 34, 45, 52, 35, 34, 36, 41, 9],
    [117, 112, 113, 133, 126, 127, 119, 96, 116, 23],
    [110, 67, 91, 85, 94, 69, 77, 81, 65, 13],
    [9, 7, 13, 12, 9, 6, 8, 9, 21, 3],
    [50, 21, 24, 32, 36, 26, 28, 30, 24, 3],
    [65, 41, 63, 67, 58, 50, 54, 45, 48, 16],
    [36, 29, 32, 28, 38, 29, 41, 27, 29, 9],
    [37, 61, 57, 35, 56, 51, 40, 58, 100, 34],
])

显示降水量的分布情况。

plt.imshow(data, cmap=plt.cm.GnBu)
plt.colorbar()
plt.xticks([])
plt.yticks([])
plt.show()

image.png
data中只有100个数据,所以每个格子一个值,看起来不是那么连续,
而实际的降水情况不会像这样离散的,区域之间的降水量应该是逐渐连续变化的。

所以,需要在data的基础上进行二维插值:

from scipy.interpolate import RectBivariateSpline

# 原始数据是 10x10 
x = np.linspace(0, 10, 10, endpoint=False)
y = np.linspace(0, 10, 10, endpoint=False)

# 插值后的数据是 500x500
x_new = np.linspace(0, 10, 500, endpoint=False)
y_new = np.linspace(0, 10, 500, endpoint=False)

# 从原始数据生成插值函数
f = RectBivariateSpline(x, y, data.T)
# 用插值函数计算新的数据
data_new = f(x_new, y_new)

# 显示插值后的结果
plt.imshow(data_new.T, cmap=plt.cm.GnBu)
plt.colorbar()
plt.xticks([])
plt.yticks([])
plt.show()

image.png
这是插值到 500x500 的效果,值越大,连续性越好。
有兴趣的话,可以调整上面代码中 x_newy_new 的个数,看看不同的效果。

4. 总结

插值作为一种常见的数据处理方法,应用的领域和场景非常多,比如:

  1. 数据预测:通过插值技术,可以预测未来的数据趋势或结果。
  2. 图像处理:插值可以用于图像处理和图像分析,以提高图像的分辨率或质量。
  3. 机器学习:插值技术也可以用于机器学习和人工智能领域。用于构建回归模型或分类模型,以便对未知数据进行预测或分类。

本文主要介绍了Scipy库的插值子模块,其内置的插值算法,以及两个应用插值的小例子。

标签:plt,--,插值,算法,scipy,df,np,数据
From: https://www.cnblogs.com/wang_yb/p/17814420.html

相关文章

  • 界面控件DevExpress WPF PDF Viewer,更快实现应用的PDF文档浏览
    DevExpressWPFPDFViewer控件可以轻松地直接在Windows应用程序中显示PDF文档,而无需在最终用户的机器上安装外部PDF查看器。P.S:DevExpressWPF拥有120+个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpressWPF能创建有着强大互动功能的XAML基础应......
  • 让SBOM成为 “实用派” 的3个思路
    评估软件物料清单(SBOM)是否实用,主要考量:是否符合标准规范、是否能全面精准识别软件成分信息,以及是否具备“互操作性”。01/ 互操作性SBOM是静态文档。所以,如果企业使用SBOM只是为了检查软件,除此之外什么也不做,那么从软件SBOM中获得的价值就非常有限。SBOM的使用,重点在于发挥它......
  • 大文件上传最全方案:秒传、断点续传、分片上传
    前言文件上传是一个老生常谈的话题了,在文件相对比较小的情况下,可以直接把文件转化为字节流上传到服务器,但在文件比较大的情况下,用普通的方式进行上传,这可不是一个好的办法,毕竟很少有人会忍受,当文件上传到一半中断后,继续上传却只能重头开始上传,这种让人不爽的体验。那有没有比较好......
  • 使用counter64解决通过SNMP获取网络流量数据不准问题
    网络流量实时速率是如何计算的?首先我们要知道网络流量实时带宽是如何计算出来的,我们先拿接口流入流量来举例子。通过SNMP的ifInOctets键值,我们可以获取到接口流入数据量的累计总量。那么如果我们想要计算流入流量的带宽速率,只需要固定一个时间间隔(比如30s),在前后分别获取一次累计......
  • uni app中建立公共方法utils
    uniapp中建立公共方法utils有一些公用的方法可以抽出来的,像日期格式化之类的步骤:1.建立文件common/utils.js文件 /***返回欢迎文本*@paramstringname姓名*/exportconsttestFun=function(name){return"hello:"+name;}    2.main.js......
  • centos 6更改yum
    环境:OS:Centos6 1.备份现有repo仓库mv/etc/yum.repos.d/CentOS-Base.repo/etc/yum.repos.d/CentOS-Base.repo.backup2.使用阿里云仓库repocurl-o/etc/yum.repos.d/CentOS-Base.repohttps://www.xmpan.com/Centos-6-Vault-Aliyun.repo--insecurecurlhttp://www.xmpan......
  • 常用电脑知识
    Windows常用快捷键:Ctrl+C:复制Ctrl+V:粘贴Ctrl+A:全选Ctrl+X:剪切Ctrl+Z:撤销Ctrl+S:保存ALT+F4:关闭窗口Shift+Delete:永久删除常用DOS命令Win+R:打开DOS命令窗口#盘符切换C:#查看当前目录所有文件dir#切换目录cd##回退上一级cd..#......
  • 神经网络基础篇:Python 中的广播(Broadcasting in Python)
    Python中的广播这是一个不同食物(每100g)中不同营养成分的卡路里含量表格,表格为3行4列,列表示不同的食物种类,从左至右依次为苹果,牛肉,鸡蛋,土豆。行表示不同的营养成分,从上到下依次为碳水化合物,蛋白质,脂肪。那么,现在想要计算不同食物中不同营养成分中的卡路里百分比。现在计算苹......
  • 神经网络基础篇:详解向量化逻辑回归(Vectorizing Logistic Regression)
    向量化逻辑回归讨论如何实现逻辑回归的向量化计算。这样就能处理整个数据集,甚至不会用一个明确的for循环就能实现对于整个数据集梯度下降算法的优化首先回顾一下逻辑回归的前向传播步骤。所以,如果有\(m\)个训练样本,然后对第一个样本进行预测,需要这样计算。计算\(z\),正在使......
  • 商品sku算法
    笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尔积(Cartesianproduct),又称直积,表示为X×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员实现简单的sku算法`constspec=[['红','白','蓝'],['32G','64G'],['移动','联通','电信']]......