首页 > 其他分享 >一文读懂强化学习:RL全面解析与Pytorch实战

一文读懂强化学习:RL全面解析与Pytorch实战

时间:2023-11-02 10:22:24浏览次数:40  
标签:dim policy torch 算法 学习 读懂 Pytorch RL 强化

在本篇文章中,我们全面而深入地探讨了强化学习(Reinforcement Learning)的基础概念、主流算法和实战步骤。从马尔可夫决策过程(MDP)到高级算法如PPO,文章旨在为读者提供一套全面的理论框架和实用工具。同时,我们还专门探讨了强化学习在多个领域,如游戏、金融、医疗和自动驾驶等的具体应用场景。每个部分都提供了详细的Python和PyTorch代码示例,以助于更好地理解和应用这些概念。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、引言

file
强化学习(Reinforcement Learning, RL)是人工智能(AI)和机器学习(ML)领域的一个重要子领域,与监督学习和无监督学习并列。它模仿了生物体通过与环境交互来学习最优行为的过程。与传统的监督学习不同,强化学习没有事先标记好的数据集来训练模型。相反,它依靠智能体(Agent)通过不断尝试、失败、适应和优化来学习如何在给定环境中实现特定目标。

强化学习的核心组成

强化学习的框架主要由以下几个核心组成:

  • 状态(State):反映环境或系统当前的情况。

  • 动作(Action):智能体在特定状态下可以采取的操作。

  • 奖励(Reward):一个数值反馈,用于量化智能体采取某一动作后环境的反应。

  • 策略(Policy):一个映射函数,指导智能体在特定状态下应采取哪一动作。

这四个元素共同构成了马尔可夫决策过程(Markov Decision Process, MDP),这是强化学习最核心的数学模型。

为什么强化学习重要?

file

实用性与广泛应用

强化学习的重要性首先体现在其广泛的应用价值。从自动驾驶、游戏AI、到量化交易、工业自动化,以及近年来在自然语言处理、推荐系统等方面的突破,强化学习都发挥着不可或缺的角色。

自适应与优化

传统的算法往往是静态的,即它们没有能力去适应不断变化的环境或参数。而强化学习算法则可以不断地适应和优化,这使它们能在更加复杂和动态的环境中表现出色。

推动AI研究前沿

强化学习也在推动人工智能的研究前沿,特别是在解决一些需要长期规划和决策的复杂问题上。例如,强化学习已成功地应用于围棋算法AlphaGo中,击败了人类世界冠军,这标志着AI在执行复杂任务方面取得了重大突破。

引领伦理与社会思考

随着强化学习在自动决策系统中的应用越来越广泛,如何设计公平、透明和可解释的算法也引发了众多伦理和社会问题,这需要我们更加深入地去探索和理解强化学习的各个方面。

file


二、强化学习基础

强化学习的核心是建模决策问题,并通过与环境的交互来学习最佳决策方案。这一过程常常是通过马尔可夫决策过程(Markov Decision Process, MDP)来描述和解决的。在本节中,我们将详细地探讨马尔可夫决策过程以及其核心组件:奖励、状态、动作和策略。

马尔可夫决策过程(MDP)

file
MDP是用来描述决策问题的数学模型,主要由一个四元组 ( (S, A, R, P) ) 组成。

  • 状态空间(S): 表示所有可能状态的集合。

  • 动作空间(A): 表示在特定状态下可能采取的所有动作的集合。

  • 奖励函数(R): ( R(s, a, s') ) 表示在状态 ( s ) 下采取动作 ( a ) 并转移到状态 ( s' ) 时所获得的即时奖励。

  • 转移概率(P): ( P(s' | s, a) ) 表示在状态 ( s ) 下采取动作 ( a ) 转移到状态 ( s' ) 的概率。

状态(State)

在MDP中,状态是用来描述环境或问题的现状。在不同应用中,状态可以有很多种表现形式:

  • 在棋类游戏中,状态通常表示棋盘上各个棋子的位置。
  • 在自动驾驶中,状态可能包括车辆的速度、位置、以及周围对象的状态等。

动作(Action)

动作是智能体(Agent)在某一状态下可以采取的操作。动作会影响环境,并可能导致状态的转变。

  • 在股市交易中,动作通常是“买入”、“卖出”或“持有”。
  • 在游戏如“超级马里奥”中,动作可能包括“跳跃”、“下蹲”或“向前移动”等。

奖励(Reward)

奖励是一个数值反馈,用于评估智能体采取某一动作的“好坏”。通常,智能体的目标是最大化累积奖励。

  • 在迷宫问题中,到达目的地可能会得到正奖励,而撞到墙壁则可能会得到负奖励。

策略(Policy)

策略是一个从状态到动作的映射函数,用于指导智能体在每一状态下应采取哪一动作。形式上,策略通常表示为 ( \pi(a|s) ),代表在状态 ( s ) 下采取动作 ( a ) 的概率。

  • 在游戏如“五子棋”中,策略可能是一个复杂的神经网络,用于评估每一步棋的优劣。

通过优化策略,我们可以使智能体在与环境的交互中获得更高的累积奖励,从而实现更优的性能。


三、常用强化学习算法

file
强化学习拥有多种算法,用于解决不同类型的问题。在本节中,我们将探讨几种常用的强化学习算法,包括他们的工作原理、意义以及应用实例。

值迭代(Value Iteration)

算法描述

值迭代是一种基于动态规划(Dynamic Programming)的方法,用于计算最优策略。主要思想是通过迭代更新状态值函数(Value Function)来找到最优策略。

算法意义

值迭代算法主要用于解决具有完全可观测状态和已知转移概率的MDP问题。它是一种“模型已知”的算法。

应用实例

值迭代经常用于路径规划、游戏(如迷宫问题)等环境中,其中所有状态和转移概率都是已知的。

Q学习(Q-Learning)

算法描述

Q学习是一种基于值函数的“模型无知”算法。它通过更新Q值(状态-动作值函数)来找到最优策略。

算法意义

Q学习算法适用于“模型无知”的场景,也就是说,智能体并不需要知道环境的完整信息。因此,Q学习特别适用于现实世界的问题。

应用实例

Q学习广泛用于机器人导航、电子商务推荐系统以及多玩家游戏等。

Policy Gradients(策略梯度)

算法描述

与基于值函数的方法不同,策略梯度方法直接在策略空间中进行优化。算法通过计算梯度来更新策略参数。

算法意义

策略梯度方法特别适用于处理高维或连续的动作和状态空间,而这些在基于值的方法中通常很难处理。

应用实例

策略梯度方法在自然语言处理(如机器翻译)、连续控制问题(如机器人手臂控制)等方面有广泛应用。

Actor-Critic(演员-评论家)

算法描述

Actor-Critic 结合了值函数方法和策略梯度方法的优点。其中,"Actor" 负责决策,"Critic" 负责评价这些决策。

算法意义

通过结合值函数和策略优化,Actor-Critic 能在各种不同的环境中实现更快和更稳定的学习。

应用实例

在自动驾驶、资源分配和多智能体系统等复杂问题中,Actor-Critic 方法被广泛应用。


四、PPO(Proximal Policy Optimization)算法

file
PPO是一种高效、可靠的强化学习算法,属于策略梯度家族的一部分。由于其高效和稳定的性质,PPO算法在各种强化学习任务中都有广泛的应用。

与强化学习的关系

PPO是用于解决马尔可夫决策过程(MDP)问题的算法。它通过优化策略(Policy)来让智能体在不同状态下选择最优动作,从而最大化预期的累积奖励。

原理

PPO的核心思想是通过限制策略更新的步长来避免太大的性能下降。这是通过引入一种特殊的目标函数实现的,该目标函数包含一个剪辑(Clipping)项来限制策略的改变程度。

具体的目标函数如下:

file

细节

  • 多步优势估计: PPO通常与多步回报(Multi-Step Return)和优势函数(Advantage Function)结合使用,以减少估计误差。

  • 自适应学习率: PPO通常使用自适应学习率和高级优化器(如Adam)。

  • 并行采样: 由于PPO是一种“样本高效”的算法,通常与并行环境采样结合使用,以进一步提高效率。

代码举例

下面是使用Python和PyTorch实现PPO的简单示例:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义策略网络
class PolicyNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(PolicyNetwork, self).__init__()
        self.fc = nn.Linear(state_dim, 128)
        self.policy_head = nn.Linear(128, action_dim)

    def forward(self, x):
        x = torch.relu(self.fc(x))
        return torch.softmax(self.policy_head(x), dim=-1)

# 初始化
state_dim = 4  # 状态维度
action_dim = 2  # 动作维度
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
epsilon = 0.2

# 采样数据(这里假设有一批样本数据)
states = torch.rand(10, state_dim)
actions = torch.randint(0, action_dim, (10,))
advantages = torch.rand(10)

# 计算旧策略的动作概率
with torch.no_grad():
    old_probs = policy_net(states).gather(1, actions.unsqueeze(-1)).squeeze()

# PPO更新
for i in range(4):  # Typically we run multiple epochs
    action_probs = policy_net(states).gather(1, actions.unsqueeze(-1)).squeeze()
    ratio = action_probs / old_probs
    surr1 = ratio * advantages
    surr2 = torch.clamp(ratio, 1-epsilon, 1+epsilon) * advantages
    loss = -torch.min(surr1, surr2).mean()

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print("PPO Update Done!")

这只是一个非常基础的示例,实际应用中还需要包括更多元素,如状态标准化、网络结构优化等。


五、强化学习实战

file

5.1 模型创建

在强化学习实战中,模型创建是第一步也是至关重要的一步。通常,这一阶段包括环境设置、模型架构设计和数据预处理等。以下是一个使用PyTorch实现强化学习模型的示例,这里我们使用一个简单的CartPole环境作为案例。

环境设置

首先,我们需要安装必要的库并设置环境。

pip install gym
pip install torch

接着,我们将导入这些库:

import gym
import torch
import torch.nn as nn
import torch.optim as optim

创建Gym环境

使用OpenAI的Gym库,我们可以方便地创建CartPole环境:

env = gym.make('CartPole-v1')

模型架构

接下来,我们设计一个简单的神经网络来作为策略网络。该网络将接收环境状态作为输入,并输出各个动作的概率。

class PolicyNetwork(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(PolicyNetwork, self).__init__()
        self.fc1 = nn.Linear(input_dim, 64)
        self.fc2 = nn.Linear(64, output_dim)
    
    def forward(self, state):
        x = torch.relu(self.fc1(state))
        action_probs = torch.softmax(self.fc2(x), dim=-1)
        return action_probs

初始化模型和优化器

在定义了模型架构之后,我们需要对其进行初始化,并选择一个优化器。

input_dim = env.observation_space.shape[0]  # 状态空间维度
output_dim = env.action_space.n  # 动作空间大小

policy_net = PolicyNetwork(input_dim, output_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=1e-2)

5.2 模型评估

模型评估通常包括在一系列测试环境下进行模拟运行,以及计算各种性能指标。

测试环境运行

以下代码展示了如何在Gym的CartPole环境中测试训练好的模型:

def evaluate_policy(policy_net, env, episodes=10):
    total_rewards = 0
    for i in range(episodes):
        state = env.reset()
        done = False
        episode_reward = 0
        while not done:
            state_tensor = torch.FloatTensor(state).unsqueeze(0)
            with torch.no_grad():
                action_probs = policy_net(state_tensor)
            action = torch.argmax(action_probs).item()
            next_state, reward, done, _ = env.step(action)
            episode_reward += reward
            state = next_state
        total_rewards += episode_reward

    average_reward = total_rewards / episodes
    return average_reward

# 使用上文定义的PolicyNetwork和初始化的env
average_reward = evaluate_policy(policy_net, env)
print(f"Average reward over {episodes} episodes: {average_reward}")

性能指标

性能指标可能包括平均奖励、方差、最大/最小奖励等。这些指标有助于我们了解模型在不同情况下的稳定性和可靠性。

# 在这里,我们已经计算了平均奖励
# 在更复杂的场景中,你可能还需要计算其他指标,如奖励的标准差等。

5.3 模型上线

模型上线通常包括模型的保存、加载和实际环境中的部署。

模型保存和加载

PyTorch提供了非常方便的API来保存和加载模型。

# 保存模型
torch.save(policy_net.state_dict(), 'policy_net_model.pth')

# 加载模型
loaded_policy_net = PolicyNetwork(input_dim, output_dim)
loaded_policy_net.load_state_dict(torch.load('policy_net_model.pth'))

部署到实际环境

模型部署的具体步骤取决于应用场景。在某些在线系统中,可能需要将PyTorch模型转换为ONNX或TensorRT格式以提高推理速度。

# 示例:将PyTorch模型转为ONNX格式
dummy_input = torch.randn(1, input_dim)
torch.onnx.export(policy_net, dummy_input, "policy_net_model.onnx")

总结

强化学习(Reinforcement Learning, RL)是人工智能中最具潜力和挑战性的研究方向之一。通过本篇文章,我们深入探讨了强化学习的核心概念,包括马尔可夫决策过程(Markov Decision Processes, MDP)以及其中的奖励、状态、动作和策略等要素。我们还介绍了多种主流的强化学习算法,如Q-Learning, DQN, 和PPO等,每一种算法都有其独特的优点和应用场景。

在强化学习实战部分,我们以CartPole环境为例,从模型创建到模型评估和上线,全方位地讲解了一个完整的RL项目的实施步骤。我们还提供了详尽的PyTorch代码示例和解释,帮助读者更好地理解和应用这些概念。

强化学习不仅在理论研究中占有重要地位,也在实际应用,如自动驾驶、金融交易和医疗诊断等多个领域有着广泛的应用前景。然而,强化学习也面临多个挑战,包括但不限于数据稀疏性、训练不稳定和环境模拟等。因此,掌握强化学习的基础知识和实战经验,将为解决这些复杂问题提供有力的工具和视角。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。
如有帮助,请多关注
TeahLead KrisChang,10+年的互联网和人工智能从业经验,10年+技术和业务团队管理经验,同济软件工程本科,复旦工程管理硕士,阿里云认证云服务资深架构师,上亿营收AI产品业务负责人。

标签:dim,policy,torch,算法,学习,读懂,Pytorch,RL,强化
From: https://www.cnblogs.com/xfuture/p/17804812.html

相关文章

  • 【PyTorch 卷积】实战自定义的图片归类
    前言        卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一,它通过卷积层、池化层、全连接层等结构,可以有效地处理如时间序列和图片数据等。关于卷积的概念网络上也比较多,这里就不一一描述了。实战为主当然要从实际问题出发,用代码......
  • Python基础入门:从Hello World到简单函数
    当然可以帮你写一篇Python基础入门的文章。下面是一篇题为《Python基础入门:从HelloWorld到简单函数》的原创文章,内容包括了Python的基本语法、变量、控制流以及简单函数的介绍。文章中也包含了相应的Python代码示例。Python基础入门:从HelloWorld到简单函数Python是一门简洁、易......
  • 如何在安装 pytorch 的时候,不安装 nvidia 相关的包?
    要在安装PyTorch时避免安装与NVIDIA相关的包,可以使用以下方法:使用CPU版本的PyTorch:PyTorch提供了CPU版本,该版本不需要与NVIDIA相关的包。你可以使用以下命令安装CPU版本的PyTorch:pipinstalltorch-fhttps://download.pytorch.org/whl/cpu/torch_stable.html这将仅安装与CPU兼容......
  • 《深度学习的数学》(涌井良幸、涌井贞美著) 神经网络计算pytorch示例一
    涌井良幸、涌井贞美著的《深度学习的数学》这本书,浅显易懂。书中还用Excel示例神经网络的计算,真是不错。但光有Excel示例还是有点欠缺的,如果有代码演示就更好了。百度了半天在网上没找到别人写的,只好自己撸一个(使用python+pytorch),供同样在学习神经网络的初学者参考。(注,这是书中4-......
  • Django实战项目-学习任务系统-自定义URL拦截器
    接着上期代码框架,6个主要功能基本实现,剩下的就是细节点的完善优化了。首先增加URL拦截器,你不会希望没有登录用户就可以进入用户主页各种功能的,所以增加URL拦截器可以解决这个问题。Django框架本身也有URL拦截器,但是因为本系统用户模型跟Django框架本身用户模型不匹配,所以没有用,......
  • Man or Honor 怒海潜将,壮志潜龙 美军的Navy Dive Carl Brashear
    上午路上刷到一个电影解说,讲的是CarlBrashear,从一位黑人少年,成长为美军中潜水不对MasterChief的传奇经历。人啊,凡事要靠自己,自我成长比什么都重要。剧中的那句ASNF-ASonNeverForgets,赤子之心,是发人深省的警句。......
  • pytorch collate_fn测试用例
    collate_fn函数用于处理数据加载器(DataLoader)中的一批数据。在PyTorch中使用DataLoader时,通过设置collate_fn,我们可以决定如何将多个样本数据整合到一起成为一个batch。在某些情况下,该函数需要由用户自定义以满足特定需求。importtorchfromtorch.utils.dataimportDatase......
  • RCurl库做爬虫效率怎么样
    RCurl库是一个非常强大的网络爬虫工具,它提供了许多功能,例如从服务器下载文件、保持连接、上传文件、采用二进制格式读取、句柄重定向、密码认证等等。使用RCurl库进行网络爬虫可以方便地获取网站上的数据,并进行数据分析和挖掘。在使用RCurl库进行网络爬虫时,需要注意一些法律和道德......
  • 解码注意力Attention机制:从技术解析到PyTorch实战
    在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关......
  • 解码注意力Attention机制:从技术解析到PyTorch实战
    在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关......