首页 > 其他分享 >实验3:OpenFlow协议分析实践

实验3:OpenFlow协议分析实践

时间:2022-10-07 15:56:55浏览次数:41  
标签:struct OpenFlow 端口 实践 header ofp uint16 实验 交换机

(一)基本要求

1. 搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据。

主机 IP地址
h1 192.168.0.101/24
h2 192.168.0.102/24
h3 192.168.0.103/24
h4 192.168.0.104/24

2. 查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

hello

控制器6633端口(我最高能支持OpenFlow 1.0) ----> 交换机53264端口

交换机53264端口(我最高能支持OpenFlow 1.5) ----> 控制器6633端口

双方建立连接,并使用 OpenFlow 1.0

Features Request / Set Config

控制器6633端口(我需要你的特征信息)----> 交换机53264端口

控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机53264端口

Port_Status

当交换机端口发生变化时,告知控制器相应的端口状态。

Features Reply

交换机53264端口(这是我的特征信息,请查收) ---> 控制器6633端口

Packet_in

有两种情况:
• 交换机查找流表,发现没有匹配条目时
• 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
交换机53264端口(有数据包进来,请指示)--- 控制器6633端口

Packet_out(控制器收到 Packet-in 消息时的响应方式之一)

控制器6633端口(请按照我给你的action进行处理) ---> 交换机53264端口

交换机与控制器的消息交互过程

3. 回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

使用TCP协议。

(二)进阶要求

将抓包基础要求第2步的抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

  1. hello

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};

  2. Features Request

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

  3. Set Config

struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};

  4. Port_Status

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};

  5. Features Reply

struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};

  6. Packet_in

struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};

  7. Flow_mod

struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};

  8. Packet_out

struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};

个人总结

  • 在一开始实验中,阅读pdf文件不够仔细,导致操作抓包和构建拓扑的顺序反了,找了好久没有发现hello包
  • 这次实验总的来说,操作较为简单,在里面寻找结构的过程比较麻烦。通过这次实验,我对OpenFlow协议交换机与控制器交互过程有了更加深刻的了解。对于wireshark抓包操作使用也更为熟练。

标签:struct,OpenFlow,端口,实践,header,ofp,uint16,实验,交换机
From: https://www.cnblogs.com/lzj666/p/16757275.html

相关文章

  • Mongodb学习实践文档
    2020年12月目 录1MongoDB简介12Mongodb与传统关系型数据库对比13Mongodb基础运维23.1Mongodb安装33.1.1创建用户33.1.2创建目录33.1.3安装33.1.4mongod......
  • 网络字节序与主机字节序的转换函数实践
    网络字节序与主机字节序的转换函数实践1、什么是字节序?字节序,顾名思义,就是字节组织的顺序分为两种,一种是以IBM、Oracle公司为代表的大端序(bigendian),一种是以Intel公司......
  • 代码实践 | CVPR2020——AdderNet(加法网络)迁移到检测网络(代码分享)
    公众号 :计算机视觉战队扫码回复:加法网络,获取源码论文链接记得前段时间“计算机视觉研究院”推送了一篇关于CVPR2020最佳分类的文献(链接:​​CVPR2020最佳目标检测|Adder......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......
  • nginx proxy webservie 问题&实践
    webservice具有特殊性,因为wsdl文件是服务器端生成的(大部分,而且是动态的),所以我们直接使用nginx进行proxy会有问题实际上此问题比较常见,而且网上也有人碰到,可能因为时间......
  • 网络字节序与主机字节序的转换函数实践
    网络字节序与主机字节序的相互转换常用系统调用Linuxsocket网络编程中,经常会使用下面四个C标准库函数进行字节序间的转换。#include<arpa/inet.h>uint32_thtonl(ui......
  • 网络字节序与主机字节序的转换函数实践
    首先我们要对于网络字节序和主机字节序有一个初步的概念。字节序:字节在内存中储存的顺序字节序的种类:(1):大端字节序,数值高位储存在内存的低地址,低位储存在内存的高地址,在 ......
  • 实验3:OpenFlow协议分析实践
    一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制。二、实验环境Ubuntu20......
  • 实验5:开源控制器实践——POX
    实验5:开源控制器实践——POX一、实验目的能够理解POX控制器的工作原理;通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法;能够......
  • 实验3:OpenFlow协议分析实践
    实验3:OpenFlow协议分析实践一、实验目的能够运用wireshark对OpenFlow协议数据交互过程进行抓包;能够借助包解析工具,分析与解释OpenFlow协议的数据包交互过程与机制......