首页 > 其他分享 >UE调用Cuda

UE调用Cuda

时间:2022-10-07 14:33:59浏览次数:69  
标签:status 调用 dev int4 Cuda error UE message cuda

本文记录了UE4调用cuda静态链接库的过程, 参考文章 https://www.sciement.com/tech-blog/c/cuda_in_ue4/

一.安装visual studio & CUDA

确保先安装visual studio, 然后安装cuda,链接-> https://developer.nvidia.com/cuda-downloads
安装CUDA时需要勾选 visual studio Integration 选项

二.创建一个CUDA项目

  • 1.打开VS,创建一个CUDA项目

  • 2.静态库lib生成设置

    • 从debug模式切换到release模式
    • 右键项目,选择属性
    • 确保配置为 release, 且常规-配置类型 选择 静态链接库lib
  • 3.CUDA函数的实现
    默认情况下,会自动创建一个名为kernel.cu 的CUDA 示例函数。
    为了确保 CUDA 的独特类型可以在 Unreal Engine 4 上毫无问题地使用,所以我制作了 addWithCuda2,它除了 addWithCuda 之外还使用 int4 类型。
    当然,剪掉头文件也是必要的。

    • kernel.cu file
    #include "cuda_lib_test.h"
    
    __global__ void addKernel(int* c, const int* a, const int* b)
    {
        int i = threadIdx.x;
        c[i] = a[i] + b[i];
    }
    
    __global__ void addKernel2(int4* c, const int4* a, const int4* b)
    {
        int i = threadIdx.x;
        c[i].x = a[i].x + b[i].x;
        c[i].y = a[i].y + b[i].y;
        c[i].z = a[i].z + b[i].z;
        c[i].w = a[i].w + b[i].w;
    }
    
    // Helper function for using CUDA to add vectors in parallel.
    cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size, std::string* error_message)
    {
        int* dev_a = 0;
        int* dev_b = 0;
        int* dev_c = 0;
        cudaError_t cuda_status;
    
        // Choose which GPU to run on, change this on a multi-GPU system.
        cuda_status = cudaSetDevice(0);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?";
            goto Error;
        }
    
        // Allocate GPU buffers for three vectors (two input, one output)    .
        cuda_status = cudaMalloc((void**)&dev_c, size * sizeof(int));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        cuda_status = cudaMalloc((void**)&dev_a, size * sizeof(int));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        cuda_status = cudaMalloc((void**)&dev_b, size * sizeof(int));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        // Copy input vectors from host memory to GPU buffers.
        cuda_status = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
        cuda_status = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
        // Launch a kernel on the GPU with one thread for each element.
        addKernel << <1, size >> > (dev_c, dev_a, dev_b);
    
        // Check for any errors launching the kernel
        cuda_status = cudaGetLastError();
        if (cuda_status != cudaSuccess) {
            *error_message = "addKernel launch failed: " + std::string(cudaGetErrorString(cuda_status));
            goto Error;
        }
    
        // cudaDeviceSynchronize waits for the kernel to finish, and returns
        // any errors encountered during the launch.
        cuda_status = cudaDeviceSynchronize();
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaDeviceSynchronize returned error code " + std::to_string(cuda_status) + " after launching addKernel!";
            goto Error;
        }
    
        // Copy output vector from GPU buffer to host memory.
        cuda_status = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
    Error:
        cudaFree(dev_c);
        cudaFree(dev_a);
        cudaFree(dev_b);
    
        return cuda_status;
    }
    
    // Helper function for using CUDA to add vectors in parallel.
    cudaError_t addWithCuda2(int4* c, const int4* a, const int4* b, std::string* error_message)
    {
        int4* dev_a = 0;
        int4* dev_b = 0;
        int4* dev_c = 0;
        const unsigned int size = 1;
        cudaError_t cuda_status;
    
        // Choose which GPU to run on, change this on a multi-GPU system.
        cuda_status = cudaSetDevice(0);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?";
            goto Error;
        }
    
        // Allocate GPU buffers for three vectors (two input, one output)    .
        cuda_status = cudaMalloc((void**)&dev_c, size * sizeof(int4));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        cuda_status = cudaMalloc((void**)&dev_a, size * sizeof(int4));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        cuda_status = cudaMalloc((void**)&dev_b, size * sizeof(int4));
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMalloc failed!";
            goto Error;
        }
    
        // Copy input vectors from host memory to GPU buffers.
        cuda_status = cudaMemcpy(dev_a, a, size * sizeof(int4), cudaMemcpyHostToDevice);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
        cuda_status = cudaMemcpy(dev_b, b, size * sizeof(int4), cudaMemcpyHostToDevice);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
        // Launch a kernel on the GPU with one thread for each element.
        addKernel2 << <1, size >> > (dev_c, dev_a, dev_b);
    
        // Check for any errors launching the kernel
        cuda_status = cudaGetLastError();
        if (cuda_status != cudaSuccess) {
            *error_message = "addKernel launch failed: " + std::string(cudaGetErrorString(cuda_status));
            goto Error;
        }
    
        // cudaDeviceSynchronize waits for the kernel to finish, and returns
        // any errors encountered during the launch.
        cuda_status = cudaDeviceSynchronize();
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaDeviceSynchronize returned error code " + std::to_string(cuda_status) + " after launching addKernel!";
            goto Error;
        }
    
        // Copy output vector from GPU buffer to host memory.
        cuda_status = cudaMemcpy(c, dev_c, size * sizeof(int4), cudaMemcpyDeviceToHost);
        if (cuda_status != cudaSuccess) {
            *error_message = "cudaMemcpy failed!";
            goto Error;
        }
    
    Error:
        cudaFree(dev_c);
        cudaFree(dev_a);
        cudaFree(dev_b);
    
        return cuda_status;
    }
    
    • cuda_lib_test.h file
    #pragma once
    
    #include <string>
    #include "cuda_runtime.h"
    #include "vector_types.h"
    #include "vector_functions.h"
    #include "device_launch_parameters.h"
    
    cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size, std::string* error_message);
    cudaError_t addWithCuda2(int4* c, const int4* a, const int4* b, std::string* error_message);
    
  • 4.创建一个CUDA静态库lib

    • 构建项目,在 ProjectPath/x64/Release 文件夹中创建了一个 .lib
  • 5.创建一个UE4项目

    • 使用UE4创建一个空的c++项目, 然后创建一个合适的 C++ 类来编写代码。我创建了一个名为 CActor 的 Actor 继承类。
      目录结构如下

      在这里,我创建了一个 CUDALib 文件夹,然后是一个 include 文件夹和一个 lib 文件夹,并分别复制了 header(cuda_lib_test.h) 和 .lib (kernel.cu)文件。

  • 6.Bulid.cs设置

    // Copyright Epic Games, Inc. All Rights Reserved.
    
    using UnrealBuildTool;
    using System.IO;
    public class CudaTest : ModuleRules
    { 
    	private string poject_root_path
    	{
    		get { return Path.Combine(ModuleDirectory, "../.."); }
    	}
    
    	public CudaTest(ReadOnlyTargetRules Target) : base(Target)
    	{
    		PCHUsage = PCHUsageMode.UseExplicitOrSharedPCHs;
    	
    		PublicDependencyModuleNames.AddRange(new string[] { "Core", "CoreUObject", "Engine", "InputCore" });
    
    		PrivateDependencyModuleNames.AddRange(new string[] {  });
    		
    		string custom_cuda_lib_include = "CudaLib/include";
    		string custom_cuda_lib_lib = "CudaLib/lib";
    
    		PublicIncludePaths.Add(Path.Combine(poject_root_path, custom_cuda_lib_include));
    		PublicAdditionalLibraries.Add(Path.Combine(poject_root_path, custom_cuda_lib_lib, "CudaTest.lib"));
    
    		string cuda_path = "C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.8";
    		string cuda_include = "include";
    		string cuda_lib = "lib/x64";
    
    		PublicIncludePaths.Add(Path.Combine(cuda_path, cuda_include));
    
    		//PublicAdditionalLibraries.Add(Path.Combine(cuda_path, cuda_lib, "cudart.lib"));
    		PublicAdditionalLibraries.Add(Path.Combine(cuda_path, cuda_lib, "cudart_static.lib"));
    		// Uncomment if you are using Slate UI
    		// PrivateDependencyModuleNames.AddRange(new string[] { "Slate", "SlateCore" });
    		
    		// Uncomment if you are using online features
    		// PrivateDependencyModuleNames.Add("OnlineSubsystem");
    
    		// To include OnlineSubsystemSteam, add it to the plugins section in your uproject file with the Enabled attribute set to true
    	}
    }
    
  • 7.编辑CActor.h,在头文件中写了实现,因为它是为了验证

// Fill out your copyright notice in the Description page of Project Settings.

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "cuda_lib_test.h"
#include "CActor.generated.h"


UCLASS()
class CUDATEST_API ACActor : public AActor
{
   GENERATED_BODY()
   
public:	
   // Sets default values for this actor's properties
   ACActor();
   UFUNCTION(BlueprintCallable, Category = "CUDATest")
     bool SimpleCUDATest() {
   	// ----- addWithCuda test -----
   	const int arraySize = 5;
   	const int a[arraySize] = { 1, 2, 3, 4, 5 };
   	const int b[arraySize] = { 10, 20, 30, 40, 50 };
   	int c[arraySize] = { 0 };
   	std::string error_message;

   	// Add vectors in parallel.
   	cudaError_t cuda_status = addWithCuda(c, a, b, arraySize, &error_message);
   	if (cuda_status != cudaSuccess) {
   		UE_LOG(LogTemp, Warning, TEXT("addWithCuda failed!\n"));
   		UE_LOG(LogTemp, Warning, TEXT("%s"), *FString(error_message.c_str()));
   		return false;
   	}
   	UE_LOG(LogTemp, Warning, TEXT("{1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}"), c[0], c[1], c[2], c[3], c[4]);

   	// ----- addWithCuda2 test -----
   	const int4 a_int4 = make_int4(1, 2, 3, 4);
   	const int4 b_int4 = make_int4(10, 20, 30, 40);
   	int4 c_int4;

   	// Add vectors in parallel.
   	cuda_status = addWithCuda2(&c_int4, &a_int4, &b_int4, &error_message);
   	if (cuda_status != cudaSuccess) {
   		UE_LOG(LogTemp, Warning, TEXT("addWithCuda failed!\n"));
   		UE_LOG(LogTemp, Warning, TEXT("%s"), *FString(error_message.c_str()));
   		return false;
   	}
   	UE_LOG(LogTemp, Warning, TEXT("{1,2,3,4} + {10,20,30,40} = {%d,%d,%d,%d}"), c_int4.x, c_int4.y, c_int4.z, c_int4.w);

   	return true;
   }
protected:
   // Called when the game starts or when spawned
   virtual void BeginPlay() override;

public:	
   // Called every frame
   virtual void Tick(float DeltaTime) override;

};

此时构建项目将编译通过,并打开虚幻编辑器

  • 8.虚幻编辑器中的设置
    • 创建一个名为CAcotr_BP的蓝图类,父类为CActor,调用之前在CActor中创建的 SimpleCUDATest()
    • 将CAcotr_BP放置到场景中
    • Window -> Developer Tools -> Output Log
    • RUN

      可以看到调用了CUDA核函数,加法计算正确
  • 参考 https://www.sciement.com/tech-blog/c/cuda_in_ue4/

标签:status,调用,dev,int4,Cuda,error,UE,message,cuda
From: https://www.cnblogs.com/scyrc/p/16759592.html

相关文章