首页 > 其他分享 >Lattice .bek档案AES加密解密

Lattice .bek档案AES加密解密

时间:2023-10-24 17:14:45浏览次数:37  
标签:bek AES Lattice int BEK void ++ crc Key

//BEK.h
#ifndef __BEK_H__ #define __BEK_H__ #include<stdio.h> #include<stdlib.h> #include<stdbool.h> /////////////////////////////////////////////////////////////////////////// // CRC Tables /////////////////////////////////////////////////////////////////////////// static unsigned short crc_16_table[16] = { 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400 }; static char fliptab[] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; unsigned char bek_content[4096] = {     //bek内容 省略 }; #define blockSize 4 // Macro to find the product of x ({02}) and the argument to xtime modulo {1b} #define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b)) // Macro to multiply numbers in the Galois Field(2^8) #define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) char pass_word_l[] = { 0x00,0x00,0x00,0x00,0x00,0x4C,0x41,0x54, 0x54,0x49,0x43,0x45,0x53,0x45,0x4D,0x49 }; // Data orientation D[0:7]. /** * @brief Move data to 0x1000, then check CRC value * @note none * @para none * @ret if CRC value not same, return false * @ if return error, you have to call Bus.Setting_Error_Message(E_UnknowFormat,0,0,0,0); and return * @ ex: * * if(!BEK_CRC_check()) * { * Bus.Setting_Error_Message(E_UnknowFormat,0,0,0,0); * return; * } * * if BEK_CRC_check() return true, it means Security_Key_128bits[] have decrypted content */ bool BEK_CRC_check(); /** * @brief Encrypt data * @note none * @para plaintext * @ret plaintext */ void Encrypt(); /** * @brief Encrypt data * @note none * @para plaintext * @ret encrypted */ void Decrypt(); /** * @brief You have to confrim the flag. If false, please don't program and return/ * @note none * @para none * @ret If BEK file encrypted OK, it will be set to true. */ bool Valid_BEK; //uint8_t tmp_content[1024]; unsigned char Security_Key_128bits[16]; unsigned char tmp_plaintext[128]; unsigned short int get_crc_16(int start, long loc, int n, char *bs ); int rounds; int keyLength; unsigned char plaintext[16], encrypted[16], state[4][4]; unsigned char roundKey[240], Key[32]; int get_SBox_Value(int num); int get_SBox_Inverse(int num); void Expand_Keys(); void Add_Round_Key(int round) ; void Sub_Bytes(); void Inv_Sub_Bytes(); void Shift_Rows(); void Inv_Shift_Rows(); void Mix_Columns(); void Inv_Mix_Columns(); #endif

 BEK.c

#include "BEK.h"


typedef unsigned short          uint16_t;

// Lookup Table for round constant word array
// Contains the values given by x to the power (i-1) being powers of x ({02}) in the field Galois Field (28)
int Rcon[255] =        {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb    };

/*
BEK::BEK()
{
    rounds = 0;
    keyLength = 0;
}

BEK::~BEK();
*/
bool BEK_CRC_check()
{
    rounds = 0;
    keyLength = 0;
    Valid_BEK = false;

    /*************************************/
    /***** Find Pending bit & CRC16*******/
    /*************************************/
    int u,p, find_ = 0;
    
    //Bus.Get_DDR_data( (uint8_t *)&bek_content , 0x0 , 1024 );
    

    for (int i = 0; i < 1024; ++i)
    {
        u = i;
        p = 0;

        for (int j = 0; j < 14; ++j)
        {
            if (bek_content[u++]==0) p++;
        }

        if(p>=14) 
        {
            find_ = i;
            break;
        }
        
    }
    
    //printf("p %X\n\r",p);
    //printf("find %X\n\r",find_);

    uint16_t file_crc16 = 0;

    file_crc16 = bek_content[find_ - 1] | (bek_content[find_ - 2]<<8);

    printf("file_crc16 %04X\n\r",file_crc16);

    uint16_t buffer_crc = 0;

    buffer_crc = get_crc_16(0, 0, find_- 2, bek_content);

    printf("buffer_crc %04X\n\r",buffer_crc);

    if (buffer_crc != file_crc16)
    {
        printf("BEK file not in buffer \n\r");
        return false;
    }

    printf("BEK file in buffer \n\r");
    /*************************************/
    /***** Remove Header *****************/
    /*************************************/
    int check_header_length = 0;
    if ( (bek_content[0]==0xFF) && (bek_content[1]==00) )
    {
        for (int i = 0; i < 1024; ++i)
        {
            if( (bek_content[i]==0x00) && (bek_content[i+1]==0xFF) )
            {check_header_length = i+2;
             printf("BEK file CRC correct \n\r");
             printf("Decrypt file............... \n\r");
             break;}
        }
    }
    else
    {
        printf("BEK file CRC not correct \n\r");
        return false;
    }

    printf("check_header_length %X\n\r",check_header_length);

    unsigned char leave_encrypted_data[128];

    //Header CRC
    unsigned short Header_CRC = get_crc_16(0, 0, check_header_length, bek_content);
    printf("Header_CRC %X\n\r",Header_CRC);

    for (int i = 0; i < 80; ++i)
    {
        leave_encrypted_data[i] = bek_content[check_header_length++];
    }

    /*************************************/
    /***** Decrypted *********************/
    /*************************************/
    unsigned char tmp_plaintext[128];
    int cr = 0;


    rounds = 128;
    // Calculate actual keyLength and rounds from the user input
    keyLength = rounds / 32;  //if 128, keyLength = 4
    rounds = keyLength + 6;   //if 128, rounds = 10
printf("keyLength=0x%x,rounds=0x%x\n\r",keyLength,rounds);
    for (int j = 0; j < 5; ++j)
    {
        /* code */
    
        //int t = 15;
        int t = 0;
        for (int i = 0; i < 16; ++i)
        {
            Key[i] = pass_word_l[i];
        }
    
        //printf("Key1:");
    
        for (int i = 0; i < 16; ++i)
        {
            //printf(" %02X", Key[i]);
        }
    
        //printf("\n\r");
    
        for (int i = 0; i < 16; ++i)
        {
            encrypted[i] = leave_encrypted_data[i + j*16];
        }
    
        // Expand_Keys before encryption
        Expand_Keys();
        Decrypt();
    
        //printf("\nDecrypted1: \n\r");
        for (int i = 0; i < blockSize * 4; i++)
        {
        //    printf("%02x ", plaintext[i]);
        }
        //printf("\n\r");
    
        t = 0;
    
        for (int i = 0; i < 8; ++i)
        {
            Key[t++] = (char)(Header_CRC >> 8);
            Key[t++] = (char)(Header_CRC);
        }
    
        for (int i = 0; i < 16; ++i)
        {
            //encrypted[i] = String_[i];
            encrypted[i] = plaintext[i];
        }
    
    
        Expand_Keys();
        Decrypt();
    
        //printf("\nDecrypted2: \n\r");
        //for (int i = 0; i < blockSize * 4; i++)
        //{
        //    printf("%02x ", plaintext[i]);
        //}
        //printf("\n\r");
        //printf("\n\r");

        for (int i = 0; i < 16; ++i)
        {
            tmp_plaintext[cr++] = plaintext[i];
        }

    }

    for (int i = 0; i < 16; ++i)
    {
        Security_Key_128bits[i] = tmp_plaintext[i+0x10];
        printf("Security_Key_128bits[%d]=0x%x\r\n",i,Security_Key_128bits[i]);
    }

    if ( (tmp_plaintext[0]<<8 | tmp_plaintext[1]) != Header_CRC)
    {
        printf("Decrypt fail! Header_CRC = 0x%x,calc = 0x%x\n\r",Header_CRC,(tmp_plaintext[0]<<8 | tmp_plaintext[1]));
        return false;
    }

    printf("Decrypt Done. Please check Security_Key_128bits[]\n\r");

    Valid_BEK = true;

    return true;
}

/*uint8_t BEK::pass_word_l[16] = {
    0x00,0x00,0x00,0x00,0x00,0x4C,0x41,0x54,
    0x54,0x49,0x43,0x45,0x53,0x45,0x4D,0x49
    }; 
*/
/*uint8_t BEK::pass_word_l[16] = {
    0x49,0x4D,0x45,0x53,0x45,0x43,0x49,0x54,
    0x54,0x41,0x4C,0x00,0x00,0x00,0x00,0x00
    }; */

//#define flip(c) fliptab[c]
// Used for CRC calculation
unsigned short int get_crc_16(int start, long loc, int n, char *bs )
{
    unsigned short int crc = start;
    int r;
    char data;
    
    while (n-->0)
    {
        //data=flip(bs.getbyte(loc));
        

        //printf("1. %X\n", bs[loc]);//FFFFFF9C

        data = bs[loc] & 0xFF; //printf("2. %X\n",data);

        data= fliptab[0xFF & data];   //printf("3. %X\n",data);

        r = crc_16_table[crc & 0xF];
        crc = (crc>>4) & 0x0FFF;
        crc = crc^r^crc_16_table[data & 0xF];
        // calculate CRC for the upper 4 bits of data
        r = crc_16_table[crc & 0xF];
        crc = (crc>>4) & 0x0FFF;
        crc = crc^r^crc_16_table[(data>>4) & 0xF];
        //next data
        loc++;
    }
    return (crc);
}


// Returns Rijndael S-box value
int get_SBox_Value(int num)
{
    // lookup table
    int sbox[256] =   {
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
    };
    return sbox[num];
}


// Returns inverse Rijndael S-box value
int get_SBox_Inverse(int num)
{
    // lookup table
    int rsbox[256] =    { 
    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
    0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
    0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
    0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
    0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
    0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
    0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
    0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
    0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
    0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
    0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
    };

    return rsbox[num];
}

// Deduces round keys from the primary Key provided
void Expand_Keys()
{
    int i,j;
    unsigned char temp[4],k;
    
    // Use the primary Key for first round
    for(i = 0; i < keyLength; i++)
    {
        roundKey[i*4]=Key[i*4];
        roundKey[i*4+1]=Key[i*4+1];
        roundKey[i*4+2]=Key[i*4+2];
        roundKey[i*4+3]=Key[i*4+3];
    }

    // Each subsequent round key is deduced from previously deduced round keys
    while (i < (blockSize * (rounds+1)))
    {
                    for(j=0;j<4;j++)
                    {
                        temp[j]=roundKey[(i-1) * 4 + j];
                    }
                    if (i % keyLength == 0)
                    {
                        // Rotate the bytes in a word to the left.
                        {
                            k = temp[0];
                            temp[0] = temp[1];
                            temp[1] = temp[2];
                            temp[2] = temp[3];
                            temp[3] = k;
                        }

                        // Take a four-byte input and apply the S-box to each of the four bytes
                        {
                            temp[0]=get_SBox_Value(temp[0]);
                            temp[1]=get_SBox_Value(temp[1]);
                            temp[2]=get_SBox_Value(temp[2]);
                            temp[3]=get_SBox_Value(temp[3]);
                        }

                        temp[0] =  temp[0] ^ Rcon[i/keyLength];
                    }
                    else if (keyLength > 6 && i % keyLength == 4)
                    {
                        {
                            temp[0]=get_SBox_Value(temp[0]);
                            temp[1]=get_SBox_Value(temp[1]);
                            temp[2]=get_SBox_Value(temp[2]);
                            temp[3]=get_SBox_Value(temp[3]);
                        }
                    }
                    roundKey[i*4+0] = roundKey[(i-keyLength)*4+0] ^ temp[0];
                    roundKey[i*4+1] = roundKey[(i-keyLength)*4+1] ^ temp[1];
                    roundKey[i*4+2] = roundKey[(i-keyLength)*4+2] ^ temp[2];
                    roundKey[i*4+3] = roundKey[(i-keyLength)*4+3] ^ temp[3];
                    i++;
    }
}

// Add round key to state by XOR-ing
void Add_Round_Key(int round) 
{
    int i,j;
    for (i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            state[j][i] ^= roundKey[round * blockSize * 4 + i * blockSize + j];
        }
    }
}
// Substitute state matrix values with corresponding S-box values
void Sub_Bytes()
{
    int i,j;
    for(i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            state[i][j] = get_SBox_Value(state[i][j]);

        }
    }
}
// Same as Sub_Bytes, but uses reverse SBox
void Inv_Sub_Bytes()
{
    int i, j;
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            state[i][j] = get_SBox_Inverse(state[i][j]);

        }
    }
}

// Shift the rows in the state to the left by the row number value
void Shift_Rows()
{
    unsigned char temp;

    // First row by 1
    temp=state[1][0];
    state[1][0]=state[1][1];
    state[1][1]=state[1][2];
    state[1][2]=state[1][3];
    state[1][3]=temp;

    // Second row by 2
    temp=state[2][0];
    state[2][0]=state[2][2];
    state[2][2]=temp;
    temp=state[2][1];
    state[2][1]=state[2][3];
    state[2][3]=temp;

    // Third row by 3
    temp=state[3][0];
    state[3][0]=state[3][3];
    state[3][3]=state[3][2];
    state[3][2]=state[3][1];
    state[3][1]=temp;
}


// Same as Shift_Rows, but shifts right instead
void Inv_Shift_Rows()
{
    unsigned char temp;
    
    temp = state[1][3];
    state[1][3] = state[1][2];
    state[1][2] = state[1][1];
    state[1][1] = state[1][0];
    state[1][0] = temp;

    temp = state[2][0];
    state[2][0] = state[2][2];
    state[2][2] = temp;
    temp = state[2][1];
    state[2][1] = state[2][3];
    state[2][3] = temp;

    temp = state[3][0];
    state[3][0] = state[3][1];
    state[3][1] = state[3][2];
    state[3][2] = state[3][3];
    state[3][3] = temp;
}
// Mixes the columns of the state matrix
void Mix_Columns()
{
    int i;
    unsigned char x1, x2, x3;
    for (i = 0; i < 4; i++)
    {    
        x1 = state[0][i];
        x3 = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i];
        x2 = state[0][i] ^ state[1][i]; x2 = xtime(x2); state[0][i] ^= x2 ^ x3;
        x2 = state[1][i] ^ state[2][i]; x2 = xtime(x2); state[1][i] ^= x2 ^ x3;
        x2 = state[2][i] ^ state[3][i]; x2 = xtime(x2); state[2][i] ^= x2 ^ x3;
        x2 = state[3][i] ^ x1; x2 = xtime(x2); state[3][i] ^= x2 ^ x3;
    }
}

// Inverse mixing of columns
void Inv_Mix_Columns()
{
    int i;
    unsigned char x1, x2, x3, x4;
    for (i = 0; i < 4; i++)
    {
        x1 = state[0][i];
        x2 = state[1][i];
        x3 = state[2][i];
        x4 = state[3][i];

        state[0][i] = Multiply(x1, 0x0e) ^ Multiply(x2, 0x0b) ^ Multiply(x3, 0x0d) ^ Multiply(x4, 0x09);
        state[1][i] = Multiply(x1, 0x09) ^ Multiply(x2, 0x0e) ^ Multiply(x3, 0x0b) ^ Multiply(x4, 0x0d);
        state[2][i] = Multiply(x1, 0x0d) ^ Multiply(x2, 0x09) ^ Multiply(x3, 0x0e) ^ Multiply(x4, 0x0b);
        state[3][i] = Multiply(x1, 0x0b) ^ Multiply(x2, 0x0d) ^ Multiply(x3, 0x09) ^ Multiply(x4, 0x0e);
    }
}

void Encrypt()
{
    int i,j,round=0;

    // Copy plaintext to state array
    for (i = 0; i < 4; i++)
    {
        for (j = 0; j < 4; j++)
        {
            state[j][i] = plaintext[i * 4 + j];
        }
    }

    // Add the first round key to the state before starting the rounds
    Add_Round_Key(0); 
    
    // The first rounds-1 rounds are the same
    for (round = 1; round < rounds; round++)
    {
        Sub_Bytes();
        Shift_Rows();
        Mix_Columns();
        Add_Round_Key(round);
    }
    
    // Last round has no Mix_Columns()
    Sub_Bytes();
    Shift_Rows();
    Add_Round_Key(rounds);

    // Copy the state array to output
    for (i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            encrypted[i * 4 + j] = state[j][i];
        }
    }
}

void Decrypt()
{
    int i, j, round = 0;

    // Copy cyphertext to state array
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            state[j][i] = encrypted[i * 4 + j];
        }
    }

    Add_Round_Key(rounds);

    for (round = rounds - 1; round>0; round--)
    {
        Inv_Shift_Rows();
        Inv_Sub_Bytes();
        Add_Round_Key(round);
        Inv_Mix_Columns();
    }

    Inv_Shift_Rows();
    Inv_Sub_Bytes();
    Add_Round_Key(0);

    // Copy the state array to output
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            plaintext[i * 4 + j] = state[j][i];
        }
    }

}

int main()
{
    bool ret = true;
    if(false == BEK_CRC_check())
    {
        printf("CRC err!");
    }
    else
    {
        printf("CRC ok!");
    }
}

 

标签:bek,AES,Lattice,int,BEK,void,++,crc,Key
From: https://www.cnblogs.com/wangxudong1/p/17785235.html

相关文章

  • app直播源码,android AES加密解密实现
     app直播源码,androidAES加密解密实现importandroid.util.Base64;importandroid.util.Log; importjava.security.Key; importjavax.crypto.Cipher;importjavax.crypto.SecretKeyFactory;importjavax.crypto.spec.DESedeKeySpec;importjavax.crypto.spec.IvParameterSpe......
  • Lattice-Based Signatures with Tight Adaptive Corruptions and More
    Abstract.Weconstructthefirsttightlysecuresignatureschemesinthemulti-usersettingwithadaptivecorruptionsfromlattices.Instarkcontrasttotheprevioustightconstructionswhosesecurityissolelybasedonnumber-theoreticassumptions,our......
  • AES key — encoded in the machine readable zone of a European ePassport
    AESkey—encodedinthemachinereadablezoneofaEuropeanePassport题目地址AESkey—encodedinthemachinereadablezoneofaEuropeanePassport解题过程第一步:补全给出的密钥通过查阅题目附录里提到的文档,可以找到校验位的具体机制,依据解释可求出初始密钥"?......
  • maestro studio 简化编写测试worflow 的工具
    对于自己编写workflow有时可能会比较复杂,maestrostudio提供了基于ai的强大能力,同时可以实时模拟器的页面与web集成对于测试人员来说是一个很不错的选择,很值得看看,同时因为maestrostudio也是开源的,代码上也值得学习参考参考资料https://maestro.mobile.dev/getting-started......
  • maestro ios 简单试用
    主要是体验下maestro的使用预备对于ios需要以来facebook的idb需要安装参考安装命令brewtapfacebook/fbbrewinstallfacebook/fb/idb-companion试用下载示例直接使用maestro自带的 maestrodownload-samples解压......
  • maestro 移动ui 自动化测试框架
    maestro是一个移动ui自动化测试框架,基于yaml定义就可以快速的实现移动ui的测试,支持ios,android,reactnatice,fluttermaestro安装简单,就是一个二进制文件说明对于需要进行移动端自动化测试的团队maestro是一个很值得使用的工具参考资料https://github.com/mobile-dev-inc/ma......
  • AES加密解密
    key要16位的字符串。publicclassAESHelper{///<summary>///AES加密///</summary>///<paramname="text">加密字符</param>///<paramname="key">密钥</param>/......
  • com.qq.weixin.mp.xml.AesException: 签名验证错误
    【已解决】AesException:签名验证错误问题原因:部分语言在url接收时会将+转化为空格导致出错的。这个问题企业微信官方客服两天也没有给个解释,突然就解决了。生气...... ......
  • R语言多元(多变量)GARCH :GO-GARCH、BEKK、DCC-GARCH和CCC-GARCH模型和可视化|附代码数据
    全文链接:http://tecdat.cn/?p=30647最近我们被客户要求撰写关于GARCH的研究报告,包括一些图形和统计输出。从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性多市场的多维广义自回归条件......
  • Postman 中 Pre-request Script 加密脚本 CryptoJS-AES-ECB-128
    参考链接:http://jser.io/2014/08/19/how-to-use-aes-in-crypto-js-to-encrypt-and-decryptAug19,2014 //明文test_Str=`{"pageNo":1,"pageSize":15}` constplaintText=test_Str;constkeyStr='3333333333333333';//一般key为一个字......