NumPy包含一个迭代器对象 numpy.nditer,这是一个有效的多维迭代器对象,使用它可以遍历数组。使用Python的标准Iterator迭代接口访问数组的每个元素。让无涯教程使用arange()函数创建一个3X4数组,并使用 nditer 对其进行迭代。
示例1
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Modified array is:' for x in np.nditer(a): print x,
该程序的输出如下-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: 0 5 10 15 20 25 30 35 40 45 50 55
示例2
选择迭代顺序以匹配数组的内存布局,而不考虑特定的顺序,这可以通过迭代以上数组的转置来看到。
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Transpose of the original array is:' b = a.T print b print '\n' print 'Modified array is:' for x in np.nditer(b): print x,
上面程序的输出如下-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Transpose of the original array is: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] Modified array is: 0 5 10 15 20 25 30 35 40 45 50 55
迭代顺序
如果使用F样式顺序存储相同的元素,则迭代器选择对数组进行迭代的更有效方法。
示例1
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Transpose of the original array is:' b = a.T print b print '\n' print 'Sorted in C-style order:' c = b.copy(order = 'C') print c for x in np.nditer(c): print x, print '\n' print 'Sorted in F-style order:' c = b.copy(order = 'F') print c for x in np.nditer(c): print x,
其输出如下-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Transpose of the original array is: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] Sorted in C-style order: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] 0 20 40 5 25 45 10 30 50 15 35 55 Sorted in F-style order: [[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]] 0 5 10 15 20 25 30 35 40 45 50 55
示例2
可以通过明确提及 nditer 对象来强制使用特定顺序。
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Sorted in C-style order:' for x in np.nditer(a, order = 'C'): print x, print '\n' print 'Sorted in F-style order:' for x in np.nditer(a, order = 'F'): print x,
它的输出将是-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Sorted in C-style order: 0 5 10 15 20 25 30 35 40 45 50 55 Sorted in F-style order: 0 20 40 5 25 45 10 30 50 15 35 55
修改数组值
nditer 对象还有另一个可选参数,称为 op_flags ,其默认值为只读,但可以将其设置为读写模式或只写模式,这将允许使用迭代器修改数组元素
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' for x in np.nditer(a, op_flags = ['readwrite']): x[...] = 2*x print 'Modified array is:' print a
其输出如下-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: [[ 0 10 20 30] [ 40 50 60 70] [ 80 90 100 110]]
外循环
nditer类的构造函数具有'flags'参数,该参数可以采用以下值-
Sr.No. | Parameter & 描述 |
---|---|
1 |
c_index C_order索引 |
2 |
f_index Fortran_order索引 |
3 |
multi-index 可以跟踪一次迭代的索引类型 |
4 |
external_loop 使给定的值是具有多个值的一维数组,而不是零维数组 |
在下面的示例中,迭代器遍历与每一列对应的一维数组。
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'Original array is:' print a print '\n' print 'Modified array is:' for x in np.nditer(a, flags = ['external_loop'], order = 'F'): print x,
输出如下-
Original array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Modified array is: [ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]
广播迭代
如果两个数组可broadcasting广播,则组合的 nditer对象可以同时对其进行迭代。假设数组 a 的维度为3X4,并且还有另一个数组 b 的维度为1X4,则使用以下类型的迭代器(数组 b broadcasting为 a 的大小)。
import numpy as np a = np.arange(0,60,5) a = a.reshape(3,4) print 'First array is:' print a print '\n' print 'Second array is:' b = np.array([1, 2, 3, 4], dtype = int) print b print '\n' print 'Modified array is:' for x,y in np.nditer([a,b]): print "%d:%d" % (x,y),
其输出如下-
First array is: [[ 0 5 10 15] [20 25 30 35] [40 45 50 55]] Second array is: [1 2 3 4] Modified array is: 0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4
参考链接
https://www.learnfk.com/numpy/numpy-iterating-over-array.html
标签:遍历,20,30,无涯,50,np,print,array,NumPy From: https://blog.51cto.com/u_14033984/7872877