首页 > 其他分享 >无涯教程-NumPy - 遍历数组

无涯教程-NumPy - 遍历数组

时间:2023-10-15 17:32:17浏览次数:40  
标签:遍历 20 30 无涯 50 np print array NumPy

NumPy包含一个迭代器对象 numpy.nditer,这是一个有效的多维迭代器对象,使用它可以遍历数组。使用Python的标准Iterator迭代接口访问数组的每个元素。让无涯教程使用arange()函数创建一个3X4数组,并使用 nditer 对其进行迭代。

示例1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)

print 'Original array is:'
print a
print '\n'

print 'Modified array is:'
for x in np.nditer(a):
   print x,

该程序的输出如下-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

示例2

选择迭代顺序以匹配数组的内存布局,而不考虑特定的顺序,这可以通过迭代以上数组的转置来看到。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 
   
print 'Original array is:'
print a 
print '\n'  
   
print 'Transpose of the original array is:' 
b = a.T 
print b 
print '\n'  
   
print 'Modified array is:' 
for x in np.nditer(b): 
   print x,

上面程序的输出如下-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Modified array is:
0 5 10 15 20 25 30 35 40 45 50 55

迭代顺序

如果使用F样式顺序存储相同的元素,则迭代器选择对数组进行迭代的更有效方法。

示例1

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

print 'Transpose of the original array is:'
b = a.T
print b
print '\n'

print 'Sorted in C-style order:'
c = b.copy(order = 'C')
print c
for x in np.nditer(c):
   print x,

print '\n'

print 'Sorted in F-style order:'
c = b.copy(order = 'F')
print c
for x in np.nditer(c):
   print x,

其输出如下-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Transpose of the original array is:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

Sorted in C-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55

Sorted in F-style order:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55

示例2

可以通过明确提及 nditer 对象来强制使用特定顺序。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Sorted in C-style order:' 
for x in np.nditer(a, order = 'C'): 
   print x,  
print '\n' 

print 'Sorted in F-style order:' 
for x in np.nditer(a, order = 'F'): 
   print x,

它的输出将是-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Sorted in C-style order:
0 5 10 15 20 25 30 35 40 45 50 55

Sorted in F-style order:
0 20 40 5 25 45 10 30 50 15 35 55

修改数组值

nditer 对象还有另一个可选参数,称为 op_flags ,其默认值为只读,但可以将其设置为读写模式或只写模式,这将允许使用迭代器修改数组元素

import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print 'Original array is:'
print a
print '\n'

for x in np.nditer(a, op_flags = ['readwrite']):
   x[...] = 2*x
print 'Modified array is:'
print a

其输出如下-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[[ 0 10 20 30]
 [ 40 50 60 70]
 [ 80 90 100 110]]

外循环

nditer类的构造函数具有'flags'参数,该参数可以采用以下值-

Sr.No. Parameter & 描述
1

c_index

C_order索引

2

f_index

Fortran_order索引

3

multi-index

可以跟踪一次迭代的索引类型

4

external_loop

使给定的值是具有多个值的一维数组,而不是零维数组

在下面的示例中,迭代器遍历与每一列对应的一维数组。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'Original array is:' 
print a 
print '\n'  

print 'Modified array is:' 
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
   print x,

输出如下-

Original array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Modified array is:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]

广播迭代

如果两个数组可broadcasting广播,则组合的 nditer对象可以同时对其进行迭代。假设数组 a 的维度为3X4,并且还有另一个数组 b 的维度为1X4,则使用以下类型的迭代器(数组 b broadcasting为 a 的大小)。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4) 

print 'First array is:' 
print a 
print '\n'  

print 'Second array is:' 
b = np.array([1, 2, 3, 4], dtype = int) 
print b  
print '\n' 

print 'Modified array is:' 
for x,y in np.nditer([a,b]): 
   print "%d:%d" % (x,y),

其输出如下-

First array is:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

Second array is:
[1 2 3 4]

Modified array is:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4

参考链接

https://www.learnfk.com/numpy/numpy-iterating-over-array.html

标签:遍历,20,30,无涯,50,np,print,array,NumPy
From: https://blog.51cto.com/u_14033984/7872877

相关文章

  • 无涯教程-NumPy - 数值范围
    在本章中,无涯教程将看到如何从数值范围创建数组。numpy.arange此函数返回一个ndarray对象,该对象包含给定范围内的均匀间隔的值。该函数的格式如下-numpy.arange(start,stop,step,dtype)构造函数采用以下参数。Sr.No.Parameter&描述1start间隔的开始。如果省略,则......
  • 无涯教程-NumPy - 高级索引
    有两种类型的高级索引-Integer索引和Boolean索引。整数索引根据数组的N维索引选择数组中的任意项,每个整数数组代表该维度的索引数,当索引与目标ndarray的维数一样时,它变得很简单。示例1importnumpyasnpx=np.array([[1,2],[3,4],[5,6]])y=x[[0,1,2],[0,1......
  • 无涯教程-NumPy - 数组属性
    在本章中,无涯教程将讨论NumPy的各种数组属性。ndarray.shape此数组属性返回一个由数组维组成的元组。它也可以用来调整数组的大小。示例1importnumpyasnpa=np.array([[1,2,3],[4,5,6]])printa.shape输出如下-(2,3)示例2#这会调整ndarray的大小importnump......
  • 无涯教程-Matplotlib - 图像(Images)
    Matplotlib软件包中的图像模块提供了加载,重新缩放和显示图像所需的功能。Pillow库支持加载图像数据,Matplotlib本机仅支持PNG图像,如果本机读取失败,则下面显示的命令将退回到Pillow上。本示例中使用的图像是PNG文件,但请记住您对自己的数据的Pillow要求。imread()函数用于读取f......
  • 无涯教程-Matplotlib - 3D线框图(Wireframe)
    线框图采用值的网格并将其投影到指定的三维表面上,并使生成的三维形式非常容易可视化。plot_wireframe()函数用于此目的-frommpl_toolkitsimportmplot3dimportnumpyasnpimportmatplotlib.pyplotaspltdeff(x,y):returnnp.sin(np.sqrt(x**2+y**2)) x=......
  • 无涯教程-Matplotlib - 三维绘图(Dimensional)
    尽管最初设计Matplotlib时仅考虑了二维绘图,但在更高版本的Matplotlib的二维显示之上仍构建了一些三维绘图实用程序,以提供一组用于三维数据可视化的工具。通过导入Matplotlib软件包随附的mplot3d工具包启用三维图。可以通过将关键字projection='3d'传递给任何普通轴创建例程来......
  • 无涯教程-Matplotlib - 3D轮廓图(Contour)
    ax.contour3D()函数创建三维轮廓图,它要求所有输入数据采用二维规则形式,并在每个点处判断Z数据。在这里,显示三维正弦函数的三维轮廓图。frommpl_toolkitsimportmplot3dimportnumpyasnpimportmatplotlib.pyplotaspltdeff(x,y):returnnp.sin(np.sqrt(x**2+......
  • 无涯教程-Matplotlib - 小提琴图(Violin)
    Violin图与箱形图相似,不同之处在于它们还显示了数据在不同值处的概率密度,在该箱形图上叠加了内核密度估计。像箱形图一样,Violin图用来表示跨不同"类别"的变量分布(或样本分布)的比较。Violin图比普通箱图更具信息性。实际上,虽然箱形图仅显示汇总统计信息,如均值/中位数和四分位数......
  • 无涯教程-Matplotlib - 等高线图(Contour)
    等高线图(有时称为“水平图”)是一种在二维平面上显示三维表面的方法。它在y轴上绘制两个预测变量XY,并以轮廓绘制响应变量Z。如果您想查看Z随两个输入X和Y的变化,等高线图是合适的,那么Z=f(X,Y)。MatplotlibAPI包含分别绘制轮廓线和填充轮廓的Contour()和Contourf()函数。这两个......
  • 无涯教程-Matplotlib - 饼图(Pie)
    饼图只能显示一系列数据,饼图以一个数据序列显示项目的大小,与项目的总和成比例,饼图中的数据点显示为整个饼的百分比。MatplotlibAPI具有pie()函数,该函数生成表示数组中数据的饼图。每个部分的面积由x/sum(x)给出。如果sum(x)<1,则x的值将直接给出小数面积。下表列出了饼图的参数......