首页 > 其他分享 >【图论】【寻找性质】CF1151E Number of Components 题解

【图论】【寻找性质】CF1151E Number of Components 题解

时间:2023-10-05 22:34:16浏览次数:54  
标签:min int 题解 Number 贡献 Components max CF1151E

CF1151E

发现每一个 \(f(l, r)\) 中的连通块总是一条链(一棵树)。

那么此时连通块的数量就等于点的数量减去边的数量。

先考虑点的总数,一个价值为 \(a_i\) 的点一定是在 \(l \leqslant a_i\) 且 \(r\geqslant a_i\) 的 \(f(l, r)\) 中才会有一个贡献,根据乘法原理,它会产生 \(a_i\times (n - a_i + 1)\) 的贡献。

再考虑边的总数,因为边是从 \(i\) 连向 \(i + 1\) 的,当且仅当 \(l\leqslant \min(a_i, a_{i + 1})\) 且 \(r\geqslant \max(a_i, a_{i + 1})\) 时,这条边才会有一个贡献,根据乘法原理,它会产生 \(\min(a_i, a_{i + 1})\times (n - \max(a_i,a_{i + 1}) + 1)\) 的贡献。

最后答案就显而易见了。

时间复杂度:\(\mathcal{O}(n)\)

代码:

const int N = 1e5 + 5;
int n, a[N];

int main() {
	n = read();
	for (int i = 1; i <= n; i++) a[i] = read();
	ll ans = 0;
	for (int i = 1; i <= n; i++) ans += 1ll * a[i] * (n - a[i] + 1);
	for (int i = 1; i < n; i++) ans -= 1ll * min(a[i], a[i + 1]) * (n - max(a[i], a[i + 1]) + 1);
	cout << ans << endl;
	return 0;
}

标签:min,int,题解,Number,贡献,Components,max,CF1151E
From: https://www.cnblogs.com/Pengzt/p/17744046.html

相关文章

  • 【二分】P7795 [COCI2014-2015#7] PROSJEK 题解
    P7795典。显然\(\mathcal{O}(n^2)\)的时间复杂度无法通过。使子段平均值最大,考虑二分。可以二分平均值\(mid\),然后判断是否有满足条件的子段.时间复杂度:\(\mathcal{O}(\dfrac{n\log\max\{a_i\}}{\text{eps}})\),其中\(\text{eps}\)为设置的精度,\(\max\{a_i\}\leq10......
  • P8565 Sultan Rage 题解
    P8565发现数列\(a\)增长的特别快,项数最多时是\(a_1=a_2=\cdots=a_{100}\),但这样也只会有一百多项就可以超过\(10^{18}\)。可以考虑搜索,因为搜索树会比较稀疏,函数dfs(val,cur)表示凑出\(x\)还需要\(val\),现在在考虑\(cur\)。但光是搜索肯定不能过这道题,考虑优......
  • P4133 [BJOI2012]最多的方案 题解
    P4133双倍经验发现斐波那契数列增长极快,不到\(100\)项就超过了\(10^{18}\),搜索树也极为稀疏,可以考虑搜索。爆搜肯定会超时,考虑优化:可行性剪枝。记忆化,去除重复的计算。改变搜索的顺序,因为先考虑小元素的话,会有较多的无用的搜索,且小元素较灵活,更容易凑到\(x\),故可......
  • 【竞赛图】【DP】ARC163D Sum of SCC 题解
    ARC163D发现这个竞赛图一定能被分为两个集合\(A\),\(B\)。满足\(\forallu\inA,v\inB\),均有\(u\tov\inE\)。答案就是划分这两个集合的方案数。证明:首先,竞赛图缩完点后一定是一条链,对强连通分量进行标号,满足编号小的强连通分量指向编号大的强连通分量。不妨令竞赛图\(G\)......
  • 【整除分块】【DP】ABC239Ex Dice Product 2 题解
    ABC239H简单题。令\(f_i\)表示乘到\(\gei\)的期望。容易得到\(f_i=\dfrac{\sum\limits_{j=1}^{n}f_{\lceil\frac{i}{j}\rceil}}{n}\)。将\(f_i\)移到同一边,去掉系数,有\(f_i=\dfrac{n\sum\limits_{j=2}^{n}f_{\lceil\frac{i}{j}\rceil}}{n-1}\)。提出\(\frac{n-1}{n......
  • 【字符串】【哈希】ABC284F ABCBAC 题解
    ABC284F这题的正解是\(Z\)函数。如果\(str=T+T\)的话,若可以找到连续的分别长为\(n\)的两段,且这两段可通过\(1\)次翻转变为相同的字符串,那么便一定有解,否则无解。暴力判断是\(\mathcal{O}(n)\)的,时间复杂度直接上天。可以用哈希\(\mathcal{O}(1)\)地判断出两个......
  • 【组合计数】ARC058D Iroha and a Grid 题解
    ARC058D简单组合计数。可以先把矩形旋转一下,变为求从\((1,1)\)走到\((n,m)\),只能向上或向右移动。且不经过左上角的\(A\timesB\)的禁区的方案数,对\(10^9+7\)取模。假如没有\(A\timesB\)的禁区的话,那么方案数为\(C_{n+m-2}^{n-1}\)。就是一共要走\(n+m-2\)......
  • 「题解」Codeforces Round 883 (Div. 3)
    A.EscalatorConversationsProblem[题目](RudolphandCuttheRope)Sol&Code绳子长度大于钉子高度的要剪#include<bits/stdc++.h>typedeflonglongll;intmin(inta,intb){returna<b?a:b;}intmax(inta,intb){returna>b?a:b;}in......
  • 「题解」Codeforces Round 888 (Div. 3)
    A.EscalatorConversationsProblem题目Sol&Code签到#include<bits/stdc++.h>typedeflonglongll;intmin(inta,intb){returna<b?a:b;}intmax(inta,intb){returna>b?a:b;}intT,n,m,k,h;intmain(){scanf(......
  • 「题解」Codeforces Round 891 (Div. 3)
    A.ArrayColoringProblem题目Sol&Code只有数列的和为偶数时才符合要求,即有任意个偶数,偶数个奇数。将这些数分成两部分,发现两部分初始值\(0\)为偶数,偶数不会影响奇偶性,故需要偶数个奇数。#include<bits/stdc++.h>#defineN51typedeflonglongll;intmin(inta,......