首页 > 其他分享 >题解 hdu 1269 迷宫城堡

题解 hdu 1269 迷宫城堡

时间:2023-10-02 10:44:17浏览次数:43  
标签:hdu int 题解 1269 st vis dfn low now

找点图论练习题写,发现hdu又寄了,那就发到blog里吧。

思路:tarjan缩点判断DAG中点数是否为1。若是,则该图为强连通图。

 

//produced by miya555
//stupid mistakes:多测记得清空
//ideas:tarjan模板
#include<bits/stdc++.h>
using namespace std;
const int N=10010;
int n,m,low[N],ne[N],h[N],idx,top;
int timestamp,dfn[N],st[N],ins[N],cnt,now,vis[N],e[N];
void add(int a,int b){
    e[idx]=b;
    ne[idx]=h[a];
    h[a]=idx++;
}
void tarjan(int u){
    low[u]=dfn[u]=++timestamp;
    st[++top]=u;
    ins[u] = 1;
    for(int i=h[u];i;i=ne[i]){
        int j=e[i];
        if(!dfn[j]){
            tarjan(j);
            low[u]=min(low[u],low[j]);
        }else if(ins[j]){
            low[u]=min(low[u],dfn[j]);
        }
    }
    if(low[u]==dfn[u]){
        cnt++;
        while(1) {
            int now = st[top];
            top--;
            vis[now]=0;
            if(now == u) break;
        }
    }
}
int a,b;
int main(){
    while(~scanf("%d%d",&n,&m)){
    //cin>>n>>m;    
    if(n == 0 && m == 0) break;
    memset(h,0,sizeof h);
    memset(vis,0,sizeof vis);
    memset(st,0,sizeof st);
    for(int i = 1; i<=n; i++) dfn[i] = low[i] = 0;
    for(int i = 1; i<=m; i++) {
            cin>>a>>b;
            add(a,b);
        }
        for(int i = 1; i<=n; i++) {
            if(dfn[i] == 0) tarjan(i);
        }
        if(cnt == 1) puts("yes");
        else puts("no");
    }
    return 0;
}

 

标签:hdu,int,题解,1269,st,vis,dfn,low,now
From: https://www.cnblogs.com/Miya555/p/17739755.html

相关文章

  • 题解 小 a 和 uim 之大逃离
    题目链接首先可以想到设状态\(k_1,k_2\)表示小\(a\)和小\(uim\)分别表示他们目前取得的得分,那么最终的答案便是\(k_1=k_2\)的时候。但是这样设置状态的复杂度无疑是高的。并且十分浪费,所以考虑设\(z\)表示\(k_1-k_2\)的值。那么\(z=0\)就是答案。接着考虑如何处......
  • SP9494 ZSUM - Just Add It 题解
    题目传送门前置知识快速幂解法推式子:\(\begin{aligned}Z_n+Z_{n-1}-2Z_{n-2}&=(Z_n-Z_{n-2})+(Z_{n-1}-Z_{n-2})\\&=(S_n+Q_n-S_{n-2}-Q_{n-2})+(S_{n-1}+Q_{n-1}-S_{n-2}-Q_{n-2})\\&=((n-1)^k+n^k+(n-1)^{n-1}+n^n)+((n-1)^k+(n-1)^{n-1})\\&=n^n+n^k+......
  • P2951 [USACO09OPEN] Hide and Seek S 题解
    Problem题目概述给你一个无向图,边权都为\(1\),求:离\(1\)号点最远的点的编号、最远的距离、有几个点是离\(1\)号点最远的。思路直接用:优先队列\(BFS\),先求出\(1\)号点到每个点的最短路,存到\(dis\)数组中,然后再求\(max(dis[i])\),就搞定了。错误原因审题&做法错......
  • P1144 最短路计数 题解
    Problem考察算法:拓扑排序+\(DP\)+\(Dijkstra\)。题目简述给出一个无向无权图,问从顶点\(1\)开始,到其他每个点的最短路有几条。思路先求出\(1\)号点到每个点的最短路\(d_i\)。分析每条边$(x,y)$:如果d[x]+1==d[y]:这条边有用。将所有有用的边拓扑排序......
  • [POI2003] Monkeys 题解
    [POI2003]Monkeys题解正着做貌似不好做,发现猴子是否掉落取决于“最后一根稻草”,也就是最后撒手的那个猴子,那我们考虑倒着把猴子网拼回去。这样,每群猴子掉落的时刻就是与\(1\)号猴子连通的时刻。利用并查集可以维护猴子的连通性,但是怎么更新答案呢?这里用vector进行了一个猴......
  • CF1874C Jellyfish and EVA 题解
    题意给定一个有向无环图,对于任意一条边\((u_i,v_i)\),有\(u_i<v_i\)。定义一次从节点\(u\)开始的移动为如下过程:\(\tt{Alice}\)选择从\(u\)出发的且未被删除的一条边。\(\tt{Bob}\)在从\(u\)出发的且未被删除的边中等概率随机选择一条。若两人选择的边相同......
  • P1126 机器人搬重物 题解
    Problem题目概括$n\timesm$的网格,有些格子是障碍格。\(0\)无障碍,\(1\)有障碍。机器人有体积,总是在格点上。有5种操作:向前移动\(1/2/3\)步左转\(/\)右转每次操作需要\(1\)秒。求从\(x_1,y_1\)到\(x_2,y_2\)点的最短路。机器人有一个初始方向$......
  • P1182 数列分段 Section II 题解
    Problem考察知识点:二分、贪心。题目描述对于给定的一个数组,现要将其分成\(M\)段,并要求每段连续,且每段和的最大值最小。思路二分答案出每段和最大值的最小值,然后贪心检验是否满足。难点在\(check\)上。策略:每次开始循环,如果没有超范围,就一直选,知道选满为止,求最大值。代......
  • Codeforces 1278D 题解
    题目大意题目大意给你\(n\)(\(1\leqslantn\leqslant5\cdot10^5\))条线段\([l_1,r_1],[l_2,r_2],\cdots,[l_n,r_n]\)(\(1\lel_i<r_i\le2n\))。保证每条线段的端点为整数,且\(\foralli,j\)(\(i\nej\)),不存在\(l_i=l_j\)或\(r_i=r_j\),不存......
  • P5943 [POI2002] 最大的园地 题解
    题目传送门前置知识单调栈简化题意在一个\(n\timesn\)的正方形内找到最大的由\(0\)组成的子矩形的面积。解法令\(f_{i,j}(1\lei,j\len)\)表示从\((1,j)\)到\((i,j)\)中以\((i,j)\)结尾的均为\(0\)的子串长度,即\((i,j)\)上面可延伸的最大距离(子矩形的......