首页 > 其他分享 >9/25

9/25

时间:2023-09-30 21:44:07浏览次数:38  
标签:25 小测 一步 锡焊 舍友 简单

今天简单学习了电路板的简单锡焊,成功点亮了小灯泡。下午简单讲解了类和对象的抽象性,并进行了一次随堂小测,虽然无人生还,但是逐渐理解了软件工程的含义——一步一步完善并维护软件。

 

 和舍友一块学习。

标签:25,小测,一步,锡焊,舍友,简单
From: https://www.cnblogs.com/kongxiangzeng/p/17738276.html

相关文章

  • 20211325 2023-2024-1 《信息安全系统设计与实现(上)》第四周学习笔记
    202113252023-2024-1《信息安全系统设计与实现(上)》第四周学习笔记一、任务要求自学教材第7,8章,提交学习笔记(10分),评分标准如下1.知识点归纳以及自己最有收获的内容,选择至少2个知识点利用chatgpt等工具进行苏格拉底挑战,并提交过程截图,提示过程参考下面内容(4分)“我......
  • 移植FatFs到W25Q256
    1.移植diskio.cdiskio.c文件用来连接硬件存储器和ff.c文件a.为W25Q256设置驱动编号/*将W25Q256设为驱动1*/#defineW25Q256 1 /*MapFlashW25Q256tophysicaldrive1*/b.配置disk_status函数,获取W25Q256状态DSTATUSdisk_status( BYTEpdrv /*Physicaldrivenmu......
  • CF1425F Flamingoes of Mystery 题解
    题目传送门前置知识前缀和&差分解法令\(sum_k=\sum\limits_{i=1}^{k}a_k\)。考虑分别输入\(sum_2\simsum_n\),故可以由于差分知识得到\(a_i=sum_i-sum_{i-1}(3\lei\len)\),接着输入\(a_2+a_3\)的值从而求出\(a_2=sum_3-a_3,a_1=sum_2-a_2\)。同时因为是交互题,记......
  • 9.25日
    今天简单学习了电路板的简单锡焊,成功点亮了小灯泡。下午简单讲解了类和对象的抽象性,并进行了一次随堂小测,虽然无人生还,但是逐渐理解了软件工程的含义——一步一步完善并维护软件。 ......
  • FastAPI学习-25.response_model 定义响应模型
    你可以在任意的_路径操作_中使用 response_model 参数来声明用于响应的模型:@app.get()@app.post()@app.put()@app.delete()fromtypingimportAny,List,UnionfromfastapiimportFastAPIfrompydanticimportBaseModelapp=FastAPI()classItem(BaseModel)......
  • [LeetCode] 2251. 花期内花的数目 - 二分查找/有序数组
    Problem:2251.花期内花的数目思路看题目应该是一道比较经典的差分,本来准备拿差分数组做的,后来搂了一眼题解,发现用二分的方法更简单解题方法此题有一种很简便的方法,第i个人到达时间为people[i],所以我们不难找到在这个时间之前花期已经开始的花的数量,即v1=start<=people[i]......
  • LC2251 花期内花的数目
    方法一:差分因为是先修改后查询,很容易想到差分,但因为数据值域\([-10^9,10^9]\)过大,所以不能使用差分数组,而应用map进行存储,如代码所示:map<int,int>diff;//正常进行差分操作for(auto&f:flowers){diff[f[0]]++;diff[f[1]+1]--;}//dosomethingautoit......
  • [ABC256Ex] I like Query Problem
    原题传送门题意区间整除,区间推平,查询区间和。大家好啊,我喜欢暴力乱搞,所以这题我用暴力乱搞AC了。首先观察到操作\(1\)的性质:首先保证了除数至少为\(2\)(不然是\(1\)或者\(0\)的话也没啥意义啊),所以对一个数不断进行操作的话,每次数的大小至少会减少一半,减小到\(0\)之......
  • 230925校内赛
    T1开挂我卢本伟没有开挂题解挺简单的,不过我写的比较麻烦因为我们需要让多的尽可能多来让少的尽可能少,所以会想到用栈来存储需要更改的数,靠近栈底就需要更多次数来更改,栈顶则更少最后只用记录下来所有的次数并按从多到少依次分配从小到大的修改代价#include<bits/stdc++.h......
  • [洛谷]-5825排列计数-欧拉数、NTT
    目录边界对称性递推形式容斥https://www.luogu.com.cn/problem/P5825题意:我们记一个排列P的升高为\(k\)当且仅当存在\(k\)个位置\(i\)使得\(P_i<P_{i+1}\)。给定排列长度\(n\),对于所有整数\(k\in[0,n]\),求有多少个排列的升高为\(k\),\(1\leqn\leq2\times10^5\)......