首页 > 其他分享 >[春季测试 2023] 密码锁 题解

[春季测试 2023] 密码锁 题解

时间:2023-09-30 10:33:20浏览次数:44  
标签:rt std int 题解 delta 2023 密码锁 pts mx

题目传送门

闲话

duliu 题,写了 10k。

题意

形式化地,对于 \(1 \leq i \leq k\),定义密码锁第 \(i\) 行的松散度为

\[c(i) = \max \limits _ {j = 1} ^ n a _ {i, j} - \min \limits _ {j = 1} ^ n a _ {i, j} \]

同时定义整个密码锁的松散度为

\[C = \max \limits _ {1 \leq i \leq k} c(i) \]

求拨动若干次后最小的 \(C\) 值。

第一类测试点共有十二个,保证 \(k \leq 3\),\(n \leq 5 \times 10 ^ 4\),\(\sum n \leq 1.5 \times 10 ^ 5\)。

第二类测试点共有八个,保证 \(k = 4\),\(n \leq 10 ^ 4\),
\(\sum n \leq 3 \times 10 ^ 4\)。

做法

对 \(k\) 的大小分类讨论。

\(k=1,2\) 做法显然,略。

\(k=3\)

思路:

\[\left\{ \begin{align*} & \text{dp} \\ & \text{转为二分判定} \\ & \text{模拟退火} \end{align*} \right. \]

看起来转为二分判定比较靠谱。

二分时钦定最大值在第一行,枚举最小值在哪一行。

有最大值/最小值的行容易判断是否合法。对于剩下一行,问题转化为:数轴上多个带颜色的点,求是否有一个长度为(当前二分的答案)的区间覆盖每个颜色的点至少一个。

设目前二分的答案为 \(x\),将每个点 \(i\) 替换为 \([i, i+x+1)\) 的区间,则这些区间的交即为上述问题区间的右端点。问题再次转化为:数轴上多个区间,求是否存在至少被 \(n\) 个区间覆盖的点。注意,对于同种颜色的点,区间要先取并。

区间覆盖即区间加,可以用差分维护。最后将差分数组做一个前缀和,途中顺便检查是否有点的值等于 \(n\) 即可。

时间复杂度 \(O((n+a) \log a)\)。

bool check3(int x, int mn, int mx, bool dmn){ // mx on first{{{
    std::fill(delta, delta+A+1, 0); // 差分数组
    static std::vector<std::pair<int, int>> segs(3); // 使用类珂树维护区间并
    UP(i, 0, in){
        bool valid = false;
        segs.clear();
        UP(j, 0, 3){
            if(mx-ia[i][j] <= x && ia[i][(1+dmn+j)%3]-mn <= x){
                valid = true;
                int pl = ia[i][(1+!dmn+j)%3];
                segs.push_back({ pl, std::min(A, pl+x+1) }); // [l, r)
            }
        }
        if(!valid) return false;
        std::sort(segs.begin(), segs.end());
        for(auto k=segs.begin();;){
            auto j = k; j++;
            if(j == segs.end() || j->first > k->second){
                delta[k->first]++;
                delta[k->second]--;
                if(j == segs.end()) break;
                k = j;
            } else {
                k->second = j->second;
                segs.erase(j);
            }
        }
    }
    if(delta[0] == in) return true;
    UP(i, 1, A){
        delta[i] += delta[i-1];
        if(delta[i] == in) return true;
    }
    return false;
}/*}}}*/

\(k=4\)

与 \(k=3\) 类似,但区间交换成了矩形交。

问题是,二维差分数组的规模达到了 \(\Theta(n^2)\),必定超时。

我会 KDT!对所有单点离线建树,跑 \(\Theta(n)\) 次查询矩阵和。

然而结果是 TLE。

考虑扫描线,用线段树维护动态的最值。

bool check4(int x, int mn, int mx, int dmn){ // mx on first{{{
    static std::vector< std::tuple<int, int, int, int >> pts; // x, delta, yl, yr
    static std::vector<std::tuple<int, int, int, int>> lines; // x, yl, yr, delta
    static std::multiset<std::pair<int, int>> segs; // x, yl, yr, delta
    pts.clear();
    UP(i, 0, in){
        bool valid = false;
        lines.clear();
        UP(j, 0, 4){
            if(mx-ia[i][j] <= x && ia[i][(1+dmn+j)%4]-mn <= x){
                valid = true;
                int xx = ia[i][(1+(dmn+1)%3+j)%4], 
                    yy = ia[i][(1+(dmn+2)%3+j)%4];
                lines.push_back({ xx, yy, std::min(A, yy+x+1), 1 });
                lines.push_back({ std::min(A, xx+x+1), yy, std::min(A, yy+x+1), -1 });
            }
        }
        if(!valid) return false;
        segs.clear();
        std::sort(lines.begin(), lines.end());
        int lastx = -1;
        for(auto j:lines){
            if(lastx != -1 && !segs.empty()){
                int lasty = segs.begin()->first;
                for(auto k=segs.begin(); ;){
                    auto add = [&](){
                        pts.push_back({lastx, 1, lasty, k->second});
                        pts.push_back({std::get<0>(j), -1, lasty, k->second});
                    };
                    auto l=k; l++;
                    if(l==segs.end() || l->first > k->second){
                        add();
                        lasty = l->first;
                        if(l == segs.end()) break;
                        k=l;
                    } else {
                        k=l;
                    }
                }
            }
            if(std::get<3>(j) == -1){
                segs.erase(segs.find({std::get<1>(j), std::get<2>(j)}));
            } else {
                segs.insert({std::get<1>(j), std::get<2>(j)});
            }
            lastx = std::get<0>(j);
        }
    }
    std::sort(pts.begin(), pts.end());
    segt::nodcnt = 0;
    segt::Node *rt = segt::build(segt::nnod(), 0, A);
    for(auto i:pts){
        segt::add(rt, std::get<2>(i), std::get<3>(i), std::get<1>(i));
        if(rt->mx == in) return true;
    }
    return false;
}/*}}}*/

然而这样做开了 -O3 仍然会在 LOJ 上 TLE 四个点,获得 80 pts 的好成绩。

注意到每次线段树的形态都是不变的,可以打 tag 标记线段树的清空。可以获得 100 pts 的好成绩。

时间复杂度 \(O(n \log^2 a)\)。

10 KiB 完整代码
#include <set>
#include <vector>
#include <iostream>
#include <functional>
#include <tuple>
#include <algorithm>
#define UP(i,s,e) for(auto i=s; i<e; ++i)
#define USE_SEGT 1
#define DEBUG_SEGT 0
namespace IO{
    struct IOer{
        IOer& operator>>(int& x){
            x=0; static char c = getchar();
            while(!isdigit(c)) c = getchar();
            while(isdigit(c)){
                x = x*10 + c-'0';
                c = getchar();
            }
            return *this;
        }
        IOer& operator<<(int x){
            printf("%d", x);
            return *this;
        }
        IOer& operator<<(char x){
            putchar(x);
            return *this;
        }
    };
}
IO::IOer cin, cout;
//using std::cin; using std::cout;
constexpr int N = 5e4, A = 3e4+1;
namespace KDT{ // }{{{
constexpr int SIZ = 24*N;
struct Point{
    int x, y, delta;
    bool operator<(Point b){
        if(x != b.x) return x < b.x;
        return y < b.y;
    }
};
bool cmpx(Point a, Point b){ return a.x < b.x; }
bool cmpy(Point a, Point b){ return a.y < b.y; }
std::function<bool(Point, Point)> cmps[] = {cmpx, cmpy};
struct Node{
    Node *ls, *rs;
    int xl, xr, yl, yr, sum;
} nil_, *nil=&nil_, nds[SIZ];
int nodcnt=0;
Node *nnod(){ return nds+nodcnt++; }
void upd(Node *rt){
    if(rt->ls == nil) return;
    rt->xl = std::min(rt->ls->xl, rt->rs->xl);
    rt->xr = std::max(rt->ls->xr, rt->rs->xr);
    rt->yl = std::min(rt->ls->yl, rt->rs->yl);
    rt->yr = std::max(rt->ls->yr, rt->rs->yr);
    rt->sum = rt->ls->sum + rt->rs->sum;
}
Node *build(Node *rt, int l, int r, Point *data, int dim=0){
    if(l == r-1){
        rt->xl = data[l].x;
        rt->yl = data[l].y;
        rt->sum = data[l].delta;
        rt->xr = rt->xl+1;
        rt->yr = rt->yl+1;
        rt->ls = rt->rs = nil;
        return rt;
    }
    int mid = (l+r)/2;
    std::nth_element(data+l, data+mid, data+r, cmps[dim]);
    rt->ls = build(nnod(), l, mid, data, dim^1);
    rt->rs = build(nnod(), mid, r, data, dim^1);
    upd(rt);
    return rt;
}
int querysum(Node *rt, int xl, int xr, int yl, int yr){
    if(rt->xl >= xr || rt->xr <= xl || rt->yl >= yr || rt->yr <= yl){
        return 0;
    }
    if(rt->xl >= xl && rt->xr <= xr && rt->yl >= yl && rt->yr <= yr){
        return rt->sum;
    }
    return querysum(rt->ls, xl, xr, yl, yr) +
        querysum(rt->rs, xl, xr, yl, yr);
}
} // {}}}
namespace segt{ // }{{{
constexpr int SIZ = A*2;
struct Node{
    Node *ls, *rs;
    int l, r;
    int lazy;
    int mx;
    bool cleartag;
} nil_, *nil=&nil_, nds[SIZ];
int nodcnt = 0;
Node *nnod(){ return nds+nodcnt++; }
void upd(Node *rt){
    if(rt->ls == nil){
        rt->mx = rt->lazy;
        return;
    }
    rt->mx = std::max(rt->ls->mx, rt->rs->mx) + rt->lazy;
}
void pushd(Node *rt){
    if(!rt->cleartag) return;
    rt->cleartag = false;
    rt->lazy = rt->mx = 0;
    if(rt->ls == nil) return;
    rt->ls->cleartag = rt->rs->cleartag = true;
    rt->ls->mx = rt->rs->mx = 0;
}
Node *build(Node *rt, int l, int r){
    rt->l = l; rt->r = r;
    rt->lazy = rt->mx = 0;
    if(l == r-1){
        rt->ls = rt->rs = nil;
        return rt;
    }
    int mid = (l+r)/2;
    rt->ls = build(nnod(), l, mid);
    rt->rs = build(nnod(), mid, r);
    return rt;
}
void add(Node *rt, int l, int r, int delta){
    if(rt->r <= l || rt->l >= r) return;
    pushd(rt);
    if(rt->l >= l && rt->r <= r){
        rt->lazy += delta;
        upd(rt);
        return;
    }
    add(rt->ls, l, r, delta);
    add(rt->rs, l, r, delta);
    upd(rt);
}
} // {}}}
namespace m{ // }{{{
int ia[N][4], in;
int delta[A+1];
void init(int k){
    cin >> in;
    UP(j, 0, k) UP(i, 0, in){
        cin >> ia[i][j];
    }
}
int calcc(int k){
    int mn = ia[0][k], mx = ia[0][k];
    UP(i, 0, in){
        mn = std::min(mn, ia[i][k]); 
        mx = std::max(mx, ia[i][k]);
    }
    return mx-mn;
}
bool check3(int x, int mn, int mx, bool dmn){ // mx on first{{{
    std::fill(delta, delta+A+1, 0);
    static std::vector<std::pair<int, int>> segs(3);
    UP(i, 0, in){
        bool valid = false;
        segs.clear();
        UP(j, 0, 3){
            if(mx-ia[i][j] <= x && ia[i][(1+dmn+j)%3]-mn <= x){
                valid = true;
                int pl = ia[i][(1+!dmn+j)%3];
                segs.push_back({ pl, std::min(A, pl+x+1) }); // [l, r)
                //delta[ia[i][(1+!dmn+j)%3]] += 1;
                //delta[std::min(in, ia[i][(1+!dmn+j)%3]+x+1)] -= 1;
            }
        }
        if(!valid) return false;
        std::sort(segs.begin(), segs.end());
        for(auto k=segs.begin();;){
            auto j = k; j++;
            if(j == segs.end() || j->first > k->second){
                delta[k->first]++;
                delta[k->second]--;
                if(j == segs.end()) break;
                k = j;
            } else {
                k->second = j->second;
                segs.erase(j);
            }
        }
    }
    if(delta[0] == in) return true;
    UP(i, 1, A){
        delta[i] += delta[i-1];
        if(delta[i] == in) return true;
    }
    return false;
}/*}}}*/
bool check4(int x, int mn, int mx, int dmn){ // mx on first{{{
#if USE_SEGT
    static std::vector<
        std::tuple<int, int, int, int
#if DEBUG_SEGT
        , int
#endif
        >> pts; // x, delta, yl, yr
#else
    static std::vector<KDT::Point> pts; // x, y, delta
#endif
    static std::vector<std::tuple<int, int, int, int>> lines; // x, yl, yr, delta
    static std::multiset<std::pair<int, int>> segs;
    // x, yl, yr, delta
    pts.clear();
    UP(i, 0, in){
        bool valid = false;
        lines.clear();
        UP(j, 0, 4){
            if(mx-ia[i][j] <= x && ia[i][(1+dmn+j)%4]-mn <= x){
                valid = true;
                int xx = ia[i][(1+(dmn+1)%3+j)%4], 
                    yy = ia[i][(1+(dmn+2)%3+j)%4];
                lines.push_back({
                        xx,
                        yy,
                        std::min(A, yy+x+1),
                        1
                        });
                lines.push_back({
                        std::min(A, xx+x+1),
                        yy,
                        std::min(A, yy+x+1),
                        -1
                        });
            }
        }
        if(!valid) return false;
        segs.clear();
        std::sort(lines.begin(), lines.end());
        int lastx = -1;
        for(auto j:lines){
            if(lastx != -1 && !segs.empty()){
                int lasty = segs.begin()->first;
                for(auto k=segs.begin(); ;){
                    auto add = [&](){
#if USE_SEGT
#if DEBUG_SEGT
                        pts.push_back({lastx, 1, lasty, k->second, i});
                        pts.push_back({std::get<0>(j), -1, lasty, k->second, i});
#else
                        pts.push_back({lastx, 1, lasty, k->second});
                        pts.push_back({std::get<0>(j), -1, lasty, k->second});
#endif
#else
                        pts.push_back({lastx, lasty, 1});
                        pts.push_back({lastx, k->second, -1});
                        pts.push_back({std::get<0>(j), lasty, -1});
                        pts.push_back({std::get<0>(j), k->second, 1});
#endif
                    };
                    auto l=k; l++;
                    if(l==segs.end() || l->first > k->second){
                        add();
                        lasty = l->first;
                        if(l == segs.end()) break;
                        k=l;
                    } else {
                        k=l;
                    }
                }
            }
            if(std::get<3>(j) == -1){
                segs.erase(segs.find({std::get<1>(j), std::get<2>(j)}));
            } else {
                segs.insert({std::get<1>(j), std::get<2>(j)});
            }
            lastx = std::get<0>(j);
        }
    }
    std::sort(pts.begin(), pts.end());
#if USE_SEGT
    // segt::nodcnt = 0;
    static segt::Node *rt = segt::build(segt::nnod(), 0, A);
    rt->cleartag = true;
    for(auto i:pts){
        segt::add(rt, std::get<2>(i), std::get<3>(i), std::get<1>(i));
        if(rt->mx == in) return true;
    }
#else
    for(auto i=pts.begin(); ; ){
        auto j=i; j++;
        if(j == pts.end()) break;
        if(i->x == j->x && i->y == j->y){
            i->delta += j->delta;
            pts.erase(j);
        } else {
            if(i->delta == 0) pts.erase(i);
            i=j;
        }
    }
    KDT::nodcnt = 0;
    KDT::Node *rt = KDT::build(KDT::nnod(), 0, pts.size(), pts.data());
    for(auto i:pts){
        if(KDT::querysum(rt, 0, i.x+1, 0, i.y+1) == in) return true;
    }
#endif
    return false;
}/*}}}*/
void work1(){ init(1); cout << calcc(0) << '\n'; }
void work2(){ init(2); UP(i, 0, in){ if(ia[i][0] > ia[i][1]) std::swap(ia[i][0], ia[i][1]); } cout << std::max(calcc(0), calcc(1)) << '\n'; }
void work3(){
    init(3);
    int mx=ia[0][0], mn=ia[0][0];
    UP(i, 0, in) UP(j, 0, 3){
        mx = std::max(mx, ia[i][j]);
        mn = std::min(mn, ia[i][j]);
    }
    int l=-1, r=mx-mn+0; // (l, r]
    while(r-l>1){
        int mid=(l+r)/2;
        if(check3(mid, mn, mx, true) || check3(mid, mn, mx, false)){
            r=mid;
        } else l=mid;
    }
    cout << r << '\n';
}
void work4(){
    init(4);
    int mx=ia[0][0], mn=ia[0][0];
    UP(i, 0, in) UP(j, 0, 4){
        mx = std::max(mx, ia[i][j]);
        mn = std::min(mn, ia[i][j]);
    }
    int l=-1, r=mx-mn+0; // (l, r]
    while(r-l>1){
        //int mid= (r-l) > 100 ? r-(r-l)/4 : (l+r)/2;
        int mid = (l+r)/2;
        if(check4(mid, mn, mx, 0) || check4(mid, mn, mx, 1) || check4(mid, mn, mx, 2)){
            r=mid;
        } else l=mid;
    }
    cout << r << '\n';
}
} // {}}}
using namespace m;
int main(){
    int it, ik;
    cin >> it >> ik;
    UP(i, 0, it){
        if(ik == 1) work1();
        else if(ik == 2) work2();
        else if(ik == 3) work3();
        else work4();
    }
    return 0;
}

标签:rt,std,int,题解,delta,2023,密码锁,pts,mx
From: https://www.cnblogs.com/x383494/p/17737657.html

相关文章

  • 2023-09-29-周五
    今天中秋节...是的...哈哈可还是很emo回望整整一天,,,好像还是没干什么月饼??这东西我好像吃了很多...都是实验室送的同时,,我想想...我还喝了7~8瓶东方树叶..........
  • CF961E Tufurama 题解
    CF961ETufurama题解二维数点做法题意  给定长度为\(n\)的序列\(a\),统计二元组\((i,j)\)的个数,使得该二元组满足\(1\leqi<j\leqn,a_i\geqj,a_j\geqi\)。\(n\)在\(2\times10^{5}\)级别,\(a_i\)在\(1\times10^{9}\)级别。思路分析  我们考虑把......
  • 2023.9.29
    今天继续去试着做之前的一道题,但是写的exp报了一些奇怪的错,去查,然后尝试解决,再报新的错,再查,再尝试解决.......总之试了很久,最后发现可能是我当前Ubuntu版本的问题,于是又去找了个对应版本的Ubuntu,重新建了一个虚拟机,安装,配置pwn要用到的各种东西...搞了很久,今天没能做出一道题,明......
  • [题解] CF1003E - Tree Constructing
    CF1003E-TreeConstructing题目传送门知识点:贪心题意给定\(n\)个顶点,问是否能够构造出一棵直径为\(d\)的树,且每个顶点的度数最多为\(k\)。思路我们要构造出一棵树,使得其直径长度一定为\(d\),那么我们可以先选择\(d+1\)个点,让这些点构成一条树链即可。接着,考虑......
  • 20230928
    //accommodate,bargain,concession,consider,dicker,exception,figure,haggle,induce,minimum,practically,atasacrificeaccommodate-容纳Toaccommodatemeanstoprovideaplaceorspaceforsomeoneorsomething.Itcanalsorefertoadjustingorad......
  • 20230929
    //accommodate,bargain,concession,consider,dicker,exception,figure,haggle,induce,minimum,practically,atasacrificeaccommodate-容纳Toaccommodatemeanstoprovideaplaceorspaceforsomeoneorsomething.Itcanalsorefertoadjustingorad......
  • P5047 [Ynoi2019 模拟赛] Yuno loves sqrt technology II 题解
    Description给你一个长为\(n\)的排列,\(m\)次询问,每次查询一个区间的逆序对数,强制在线。link\(1\leqn,m\leq10^5\)。Solution考虑分块。首先如果\(l,r\)在同一个块内,可以对于每个块暴力二维前缀和预处理。如果\(l,r\)在不同的块内。设\(bel[l]=x,bel[r]=y\)。首......
  • 2023.9.29——每日总结
    学习所花时间(包括上课):0h代码量(行):0行博客量(篇):1篇今天,上午陪同学去医院,下午休息;我了解到的知识点:休息明日计划:休息......
  • CSP2023 游记
    前言:之所以不在标题中加上&这个字符以及后面那几个字,是准备在复赛后加。今年没报J。下文的qbn,yh,lyl,yts。正文:初赛:每次敲code都用g++编译,甚至暑假在jcsy的时候由于配置VC较麻烦,直接手敲命令的,结果选择题第11题还对不了。。。阅读程序最后一题连错两道......
  • CSP-S 2021 廊桥分配 题解
    part1:题目描述:当一架飞机抵达机场时,可以停靠在航站楼旁的廊桥,也可以停靠在位于机场边缘的远机位。乘客一般更期待停靠在廊桥,因为这样省去了坐摆渡车前往航站楼的周折。然而,因为廊桥的数量有限,所以这样的愿望不总是能实现。机场分为国内区和国际区,国内航班飞机只能停靠在国内......