首页 > 其他分享 >F. Vasilije Loves Number Theory

F. Vasilije Loves Number Theory

时间:2023-09-28 15:46:44浏览次数:53  
标签:res Vasilije LL Number cin Loves ans now mod

F. Vasilije Loves Number Theory
前提知识:d(n)表示数字n的正约数个数,gcd(a,b)表示a,b两者的最大公约数
要点:问是否存在a,使得d(a * n)=n,gcd(n,a)=1,意思是n与a互质,
则可得,d(a * n)=d(a)*d(n)=n
则问题转化成n%d(n)==0?
尽管d(n)<=1e9,但n可能很大,所以可以利用质因子来求

点击查看代码
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N = 2e5 + 10;

void solve() {
	LL n, q,x;
	cin >> n >> q;
	x = n;
	map<LL, LL> now, old;
	for (LL i = 2; i * i <= x; i++) {//计算正约数的几次幂
		while (x % i == 0) {
			x /= i;
			now[i]++;
		}
	}
	if (x > 1) {
		now[x]++;
	}
	old = now;
	while (q--) {
		int op;
		cin >> op;
		if (op == 1) {
			LL s;
			cin >> s;
			//同上
			for (int i = 2; i * i <= s; i++) {
				while (s % i == 0) {
					s /= i;
					now[i]++;
				}
			}
			if (s > 1) now[s]++;
			//计算s*n的正约数数量
			LL ans = 1;
			for (auto v : now) {
				ans *= (v.second + 1);
			}
			//快速幂
			auto f = [](LL a, LL b, LL mod) {
				LL res = 1;
				while (b) {
					if (b & 1) res = (res * a) % mod;
					a = a * a % mod;
					b >>= 1;
				}
				return res;
				};
			//计算s*n的值
			LL mod = 1;
			for (auto v : now) {
				mod = (mod * f(v.first, v.second, ans)) % ans;
			}
			//输出
			if (mod %ans  == 0) {
				cout << "YES\n";
			}
			else cout << "NO\n";
		}else {//还原
			now = old;
		}
	}
	cout << '\n';
}
int main() {
	ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
	int t;
	cin >> t;
	while (t--) {
		solve();
	}
	return 0;
}

标签:res,Vasilije,LL,Number,cin,Loves,ans,now,mod
From: https://www.cnblogs.com/bu-fan/p/17735935.html

相关文章