首页 > 其他分享 >前端 数学计算 big.js 使用

前端 数学计算 big.js 使用

时间:2023-09-23 14:56:24浏览次数:38  
标签:return big yc value js Big xc 数学计算 dp

 

解决0.1 + 0.2 不等于 0.3的问题

 

解决方法

方法一,同时扩大倍数再除以相同的倍数 

0.1 +0.2
// 0.30000000000000004
(0.1 *10 + 0.2 *10) / 10
// 0.3

  

方法二,第三方库

bignumber.js

math.js

big.js

 

big.js 基础用法

运算

// 运算
//  const plus = Big(0.1).plus(0.2); // 加
//  const minus = Big(0.3).minus(0.1); // 减
//  const mul = Big(10.22).times(100); // 乘
//  const div = Big(2.4).div(0.8); // 除

 

 toFixed

function toFixed(val, len) {
	return new Big(val).toFixed(len);
}

  

  

注意事项 Big 数字不会被它的方法改变。

// Big 数字不会被它的方法改变。
// 0.3 - 0.1                              // 0.19999999999999998
// x = new Big(0.3)
// x.minus(0.1)                           // "0.2"
// x                                      // "0.3"

  

循环数组计算  

function calculate(arr, prop) {
	var prop = prop || "plus"
	var arr = arr
	var mm = new Big(arr[0]);
	var pre = mm;
	for (let i = 1; i < arr.length; i++) {
		pre = pre[prop](arr[i])
	}
	return Number(pre)
}
console.log("for 加多次", calculate([8, 2, 1], "plus")) //11
console.log("for 减多次", calculate([8, 2, 1], "minus")) //5
console.log("for 乘多次", calculate([8, 2, 1], "mul")) //16
console.log("for 除多次", calculate([8, 2, 1], "div")) //4

 

工具源码

/*
 *  big.js v6.2.1
 *  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
 *  Copyright (c) 2022 Michael Mclaughlin
 *  https://github.com/MikeMcl/big.js/LICENCE.md
 */


var Big,


	/************************************** EDITABLE DEFAULTS *****************************************/


	// The default values below must be integers within the stated ranges.

	/*
	 * The maximum number of decimal places (DP) of the results of operations involving division:
	 * div and sqrt, and pow with negative exponents.
	 */
	DP = 20, // 0 to MAX_DP

	/*
	 * The rounding mode (RM) used when rounding to the above decimal places.
	 *
	 *  0  Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)
	 *  1  To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)
	 *  2  To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)
	 *  3  Away from zero.                                  (ROUND_UP)
	 */
	RM = 1, // 0, 1, 2 or 3

	// The maximum value of DP and Big.DP.
	MAX_DP = 1E6, // 0 to 1000000

	// The maximum magnitude of the exponent argument to the pow method.
	MAX_POWER = 1E6, // 1 to 1000000

	/*
	 * The negative exponent (NE) at and beneath which toString returns exponential notation.
	 * (JavaScript numbers: -7)
	 * -1000000 is the minimum recommended exponent value of a Big.
	 */
	NE = -7, // 0 to -1000000

	/*
	 * The positive exponent (PE) at and above which toString returns exponential notation.
	 * (JavaScript numbers: 21)
	 * 1000000 is the maximum recommended exponent value of a Big, but this limit is not enforced.
	 */
	PE = 21, // 0 to 1000000

	/*
	 * When true, an error will be thrown if a primitive number is passed to the Big constructor,
	 * or if valueOf is called, or if toNumber is called on a Big which cannot be converted to a
	 * primitive number without a loss of precision.
	 */
	STRICT = false, // true or false


	/**************************************************************************************************/


	// Error messages.
	NAME = '[big.js] ',
	INVALID = NAME + 'Invalid ',
	INVALID_DP = INVALID + 'decimal places',
	INVALID_RM = INVALID + 'rounding mode',
	DIV_BY_ZERO = NAME + 'Division by zero',

	// The shared prototype object.
	P = {},
	UNDEFINED = void 0,
	NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;


/*
 * Create and return a Big constructor.
 */
function _Big_() {

	/*
	 * The Big constructor and exported function.
	 * Create and return a new instance of a Big number object.
	 *
	 * n {number|string|Big} A numeric value.
	 */
	function Big(n) {
		var x = this;

		// Enable constructor usage without new.
		if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);

		// Duplicate.
		if (n instanceof Big) {
			x.s = n.s;
			x.e = n.e;
			x.c = n.c.slice();
		} else {
			if (typeof n !== 'string') {
				if (Big.strict === true && typeof n !== 'bigint') {
					throw TypeError(INVALID + 'value');
				}

				// Minus zero?
				n = n === 0 && 1 / n < 0 ? '-0' : String(n);
			}

			parse(x, n);
		}

		// Retain a reference to this Big constructor.
		// Shadow Big.prototype.constructor which points to Object.
		x.constructor = Big;
	}

	Big.prototype = P;
	Big.DP = DP;
	Big.RM = RM;
	Big.NE = NE;
	Big.PE = PE;
	Big.strict = STRICT;
	Big.roundDown = 0;
	Big.roundHalfUp = 1;
	Big.roundHalfEven = 2;
	Big.roundUp = 3;

	return Big;
}


/*
 * Parse the number or string value passed to a Big constructor.
 *
 * x {Big} A Big number instance.
 * n {number|string} A numeric value.
 */
function parse(x, n) {
	var e, i, nl;

	if (!NUMERIC.test(n)) {
		throw Error(INVALID + 'number');
	}

	// Determine sign.
	x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;

	// Decimal point?
	if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');

	// Exponential form?
	if ((i = n.search(/e/i)) > 0) {

		// Determine exponent.
		if (e < 0) e = i;
		e += +n.slice(i + 1);
		n = n.substring(0, i);
	} else if (e < 0) {

		// Integer.
		e = n.length;
	}

	nl = n.length;

	// Determine leading zeros.
	for (i = 0; i < nl && n.charAt(i) == '0';) ++i;

	if (i == nl) {

		// Zero.
		x.c = [x.e = 0];
	} else {

		// Determine trailing zeros.
		for (; nl > 0 && n.charAt(--nl) == '0';);
		x.e = e - i - 1;
		x.c = [];

		// Convert string to array of digits without leading/trailing zeros.
		for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
	}

	return x;
}


/*
 * Round Big x to a maximum of sd significant digits using rounding mode rm.
 *
 * x {Big} The Big to round.
 * sd {number} Significant digits: integer, 0 to MAX_DP inclusive.
 * rm {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 * [more] {boolean} Whether the result of division was truncated.
 */
function round(x, sd, rm, more) {
	var xc = x.c;

	if (rm === UNDEFINED) rm = x.constructor.RM;
	if (rm !== 0 && rm !== 1 && rm !== 2 && rm !== 3) {
		throw Error(INVALID_RM);
	}

	if (sd < 1) {
		more =
			rm === 3 && (more || !!xc[0]) || sd === 0 && (
				rm === 1 && xc[0] >= 5 ||
				rm === 2 && (xc[0] > 5 || xc[0] === 5 && (more || xc[1] !== UNDEFINED))
			);

		xc.length = 1;

		if (more) {

			// 1, 0.1, 0.01, 0.001, 0.0001 etc.
			x.e = x.e - sd + 1;
			xc[0] = 1;
		} else {

			// Zero.
			xc[0] = x.e = 0;
		}
	} else if (sd < xc.length) {

		// xc[sd] is the digit after the digit that may be rounded up.
		more =
			rm === 1 && xc[sd] >= 5 ||
			rm === 2 && (xc[sd] > 5 || xc[sd] === 5 &&
				(more || xc[sd + 1] !== UNDEFINED || xc[sd - 1] & 1)) ||
			rm === 3 && (more || !!xc[0]);

		// Remove any digits after the required precision.
		xc.length = sd;

		// Round up?
		if (more) {

			// Rounding up may mean the previous digit has to be rounded up.
			for (; ++xc[--sd] > 9;) {
				xc[sd] = 0;
				if (sd === 0) {
					++x.e;
					xc.unshift(1);
					break;
				}
			}
		}

		// Remove trailing zeros.
		for (sd = xc.length; !xc[--sd];) xc.pop();
	}

	return x;
}


/*
 * Return a string representing the value of Big x in normal or exponential notation.
 * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
 */
function stringify(x, doExponential, isNonzero) {
	var e = x.e,
		s = x.c.join(''),
		n = s.length;

	// Exponential notation?
	if (doExponential) {
		s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;

		// Normal notation.
	} else if (e < 0) {
		for (; ++e;) s = '0' + s;
		s = '0.' + s;
	} else if (e > 0) {
		if (++e > n) {
			for (e -= n; e--;) s += '0';
		} else if (e < n) {
			s = s.slice(0, e) + '.' + s.slice(e);
		}
	} else if (n > 1) {
		s = s.charAt(0) + '.' + s.slice(1);
	}

	return x.s < 0 && isNonzero ? '-' + s : s;
}


// Prototype/instance methods


/*
 * Return a new Big whose value is the absolute value of this Big.
 */
P.abs = function() {
	var x = new this.constructor(this);
	x.s = 1;
	return x;
};


/*
 * Return 1 if the value of this Big is greater than the value of Big y,
 *       -1 if the value of this Big is less than the value of Big y, or
 *        0 if they have the same value.
 */
P.cmp = function(y) {
	var isneg,
		x = this,
		xc = x.c,
		yc = (y = new x.constructor(y)).c,
		i = x.s,
		j = y.s,
		k = x.e,
		l = y.e;

	// Either zero?
	if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;

	// Signs differ?
	if (i != j) return i;

	isneg = i < 0;

	// Compare exponents.
	if (k != l) return k > l ^ isneg ? 1 : -1;

	j = (k = xc.length) < (l = yc.length) ? k : l;

	// Compare digit by digit.
	for (i = -1; ++i < j;) {
		if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
	}

	// Compare lengths.
	return k == l ? 0 : k > l ^ isneg ? 1 : -1;
};


/*
 * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
 * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 */
P.div = function(y) {
	var x = this,
		Big = x.constructor,
		a = x.c, // dividend
		b = (y = new Big(y)).c, // divisor
		k = x.s == y.s ? 1 : -1,
		dp = Big.DP;

	if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
		throw Error(INVALID_DP);
	}

	// Divisor is zero?
	if (!b[0]) {
		throw Error(DIV_BY_ZERO);
	}

	// Dividend is 0? Return +-0.
	if (!a[0]) {
		y.s = k;
		y.c = [y.e = 0];
		return y;
	}

	var bl, bt, n, cmp, ri,
		bz = b.slice(),
		ai = bl = b.length,
		al = a.length,
		r = a.slice(0, bl), // remainder
		rl = r.length,
		q = y, // quotient
		qc = q.c = [],
		qi = 0,
		p = dp + (q.e = x.e - y.e) + 1; // precision of the result

	q.s = k;
	k = p < 0 ? 0 : p;

	// Create version of divisor with leading zero.
	bz.unshift(0);

	// Add zeros to make remainder as long as divisor.
	for (; rl++ < bl;) r.push(0);

	do {

		// n is how many times the divisor goes into current remainder.
		for (n = 0; n < 10; n++) {

			// Compare divisor and remainder.
			if (bl != (rl = r.length)) {
				cmp = bl > rl ? 1 : -1;
			} else {
				for (ri = -1, cmp = 0; ++ri < bl;) {
					if (b[ri] != r[ri]) {
						cmp = b[ri] > r[ri] ? 1 : -1;
						break;
					}
				}
			}

			// If divisor < remainder, subtract divisor from remainder.
			if (cmp < 0) {

				// Remainder can't be more than 1 digit longer than divisor.
				// Equalise lengths using divisor with extra leading zero?
				for (bt = rl == bl ? b : bz; rl;) {
					if (r[--rl] < bt[rl]) {
						ri = rl;
						for (; ri && !r[--ri];) r[ri] = 9;
						--r[ri];
						r[rl] += 10;
					}
					r[rl] -= bt[rl];
				}

				for (; !r[0];) r.shift();
			} else {
				break;
			}
		}

		// Add the digit n to the result array.
		qc[qi++] = cmp ? n : ++n;

		// Update the remainder.
		if (r[0] && cmp) r[rl] = a[ai] || 0;
		else r = [a[ai]];

	} while ((ai++ < al || r[0] !== UNDEFINED) && k--);

	// Leading zero? Do not remove if result is simply zero (qi == 1).
	if (!qc[0] && qi != 1) {

		// There can't be more than one zero.
		qc.shift();
		q.e--;
		p--;
	}

	// Round?
	if (qi > p) round(q, p, Big.RM, r[0] !== UNDEFINED);

	return q;
};


/*
 * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
 */
P.eq = function(y) {
	return this.cmp(y) === 0;
};


/*
 * Return true if the value of this Big is greater than the value of Big y, otherwise return
 * false.
 */
P.gt = function(y) {
	return this.cmp(y) > 0;
};


/*
 * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
 * return false.
 */
P.gte = function(y) {
	return this.cmp(y) > -1;
};


/*
 * Return true if the value of this Big is less than the value of Big y, otherwise return false.
 */
P.lt = function(y) {
	return this.cmp(y) < 0;
};


/*
 * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
 * return false.
 */
P.lte = function(y) {
	return this.cmp(y) < 1;
};


/*
 * Return a new Big whose value is the value of this Big minus the value of Big y.
 */
P.minus = P.sub = function(y) {
	var i, j, t, xlty,
		x = this,
		Big = x.constructor,
		a = x.s,
		b = (y = new Big(y)).s;

	// Signs differ?
	if (a != b) {
		y.s = -b;
		return x.plus(y);
	}

	var xc = x.c.slice(),
		xe = x.e,
		yc = y.c,
		ye = y.e;

	// Either zero?
	if (!xc[0] || !yc[0]) {
		if (yc[0]) {
			y.s = -b;
		} else if (xc[0]) {
			y = new Big(x);
		} else {
			y.s = 1;
		}
		return y;
	}

	// Determine which is the bigger number. Prepend zeros to equalise exponents.
	if (a = xe - ye) {

		if (xlty = a < 0) {
			a = -a;
			t = xc;
		} else {
			ye = xe;
			t = yc;
		}

		t.reverse();
		for (b = a; b--;) t.push(0);
		t.reverse();
	} else {

		// Exponents equal. Check digit by digit.
		j = ((xlty = xc.length < yc.length) ? xc : yc).length;

		for (a = b = 0; b < j; b++) {
			if (xc[b] != yc[b]) {
				xlty = xc[b] < yc[b];
				break;
			}
		}
	}

	// x < y? Point xc to the array of the bigger number.
	if (xlty) {
		t = xc;
		xc = yc;
		yc = t;
		y.s = -y.s;
	}

	/*
	 * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
	 * needs to start at yc.length.
	 */
	if ((b = (j = yc.length) - (i = xc.length)) > 0)
		for (; b--;) xc[i++] = 0;

	// Subtract yc from xc.
	for (b = i; j > a;) {
		if (xc[--j] < yc[j]) {
			for (i = j; i && !xc[--i];) xc[i] = 9;
			--xc[i];
			xc[j] += 10;
		}

		xc[j] -= yc[j];
	}

	// Remove trailing zeros.
	for (; xc[--b] === 0;) xc.pop();

	// Remove leading zeros and adjust exponent accordingly.
	for (; xc[0] === 0;) {
		xc.shift();
		--ye;
	}

	if (!xc[0]) {

		// n - n = +0
		y.s = 1;

		// Result must be zero.
		xc = [ye = 0];
	}

	y.c = xc;
	y.e = ye;

	return y;
};


/*
 * Return a new Big whose value is the value of this Big modulo the value of Big y.
 */
P.mod = function(y) {
	var ygtx,
		x = this,
		Big = x.constructor,
		a = x.s,
		b = (y = new Big(y)).s;

	if (!y.c[0]) {
		throw Error(DIV_BY_ZERO);
	}

	x.s = y.s = 1;
	ygtx = y.cmp(x) == 1;
	x.s = a;
	y.s = b;

	if (ygtx) return new Big(x);

	a = Big.DP;
	b = Big.RM;
	Big.DP = Big.RM = 0;
	x = x.div(y);
	Big.DP = a;
	Big.RM = b;

	return this.minus(x.times(y));
};


/*
 * Return a new Big whose value is the value of this Big negated.
 */
P.neg = function() {
	var x = new this.constructor(this);
	x.s = -x.s;
	return x;
};


/*
 * Return a new Big whose value is the value of this Big plus the value of Big y.
 */
P.plus = P.add = function(y) {
	var e, k, t,
		x = this,
		Big = x.constructor;

	y = new Big(y);

	// Signs differ?
	if (x.s != y.s) {
		y.s = -y.s;
		return x.minus(y);
	}

	var xe = x.e,
		xc = x.c,
		ye = y.e,
		yc = y.c;

	// Either zero?
	if (!xc[0] || !yc[0]) {
		if (!yc[0]) {
			if (xc[0]) {
				y = new Big(x);
			} else {
				y.s = x.s;
			}
		}
		return y;
	}

	xc = xc.slice();

	// Prepend zeros to equalise exponents.
	// Note: reverse faster than unshifts.
	if (e = xe - ye) {
		if (e > 0) {
			ye = xe;
			t = yc;
		} else {
			e = -e;
			t = xc;
		}

		t.reverse();
		for (; e--;) t.push(0);
		t.reverse();
	}

	// Point xc to the longer array.
	if (xc.length - yc.length < 0) {
		t = yc;
		yc = xc;
		xc = t;
	}

	e = yc.length;

	// Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
	for (k = 0; e; xc[e] %= 10) k = (xc[--e] = xc[e] + yc[e] + k) / 10 | 0;

	// No need to check for zero, as +x + +y != 0 && -x + -y != 0

	if (k) {
		xc.unshift(k);
		++ye;
	}

	// Remove trailing zeros.
	for (e = xc.length; xc[--e] === 0;) xc.pop();

	y.c = xc;
	y.e = ye;

	return y;
};


/*
 * Return a Big whose value is the value of this Big raised to the power n.
 * If n is negative, round to a maximum of Big.DP decimal places using rounding
 * mode Big.RM.
 *
 * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
 */
P.pow = function(n) {
	var x = this,
		one = new x.constructor('1'),
		y = one,
		isneg = n < 0;

	if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) {
		throw Error(INVALID + 'exponent');
	}

	if (isneg) n = -n;

	for (;;) {
		if (n & 1) y = y.times(x);
		n >>= 1;
		if (!n) break;
		x = x.times(x);
	}

	return isneg ? one.div(y) : y;
};


/*
 * Return a new Big whose value is the value of this Big rounded to a maximum precision of sd
 * significant digits using rounding mode rm, or Big.RM if rm is not specified.
 *
 * sd {number} Significant digits: integer, 1 to MAX_DP inclusive.
 * rm? {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 */
P.prec = function(sd, rm) {
	if (sd !== ~~sd || sd < 1 || sd > MAX_DP) {
		throw Error(INVALID + 'precision');
	}
	return round(new this.constructor(this), sd, rm);
};


/*
 * Return a new Big whose value is the value of this Big rounded to a maximum of dp decimal places
 * using rounding mode rm, or Big.RM if rm is not specified.
 * If dp is negative, round to an integer which is a multiple of 10**-dp.
 * If dp is not specified, round to 0 decimal places.
 *
 * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
 * rm? {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 */
P.round = function(dp, rm) {
	if (dp === UNDEFINED) dp = 0;
	else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) {
		throw Error(INVALID_DP);
	}
	return round(new this.constructor(this), dp + this.e + 1, rm);
};


/*
 * Return a new Big whose value is the square root of the value of this Big, rounded, if
 * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 */
P.sqrt = function() {
	var r, c, t,
		x = this,
		Big = x.constructor,
		s = x.s,
		e = x.e,
		half = new Big('0.5');

	// Zero?
	if (!x.c[0]) return new Big(x);

	// Negative?
	if (s < 0) {
		throw Error(NAME + 'No square root');
	}

	// Estimate.
	s = Math.sqrt(x + '');

	// Math.sqrt underflow/overflow?
	// Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
	if (s === 0 || s === 1 / 0) {
		c = x.c.join('');
		if (!(c.length + e & 1)) c += '0';
		s = Math.sqrt(c);
		e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
		r = new Big((s == 1 / 0 ? '5e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
	} else {
		r = new Big(s + '');
	}

	e = r.e + (Big.DP += 4);

	// Newton-Raphson iteration.
	do {
		t = r;
		r = half.times(t.plus(x.div(t)));
	} while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));

	return round(r, (Big.DP -= 4) + r.e + 1, Big.RM);
};


/*
 * Return a new Big whose value is the value of this Big times the value of Big y.
 */
P.times = P.mul = function(y) {
	var c,
		x = this,
		Big = x.constructor,
		xc = x.c,
		yc = (y = new Big(y)).c,
		a = xc.length,
		b = yc.length,
		i = x.e,
		j = y.e;

	// Determine sign of result.
	y.s = x.s == y.s ? 1 : -1;

	// Return signed 0 if either 0.
	if (!xc[0] || !yc[0]) {
		y.c = [y.e = 0];
		return y;
	}

	// Initialise exponent of result as x.e + y.e.
	y.e = i + j;

	// If array xc has fewer digits than yc, swap xc and yc, and lengths.
	if (a < b) {
		c = xc;
		xc = yc;
		yc = c;
		j = a;
		a = b;
		b = j;
	}

	// Initialise coefficient array of result with zeros.
	for (c = new Array(j = a + b); j--;) c[j] = 0;

	// Multiply.

	// i is initially xc.length.
	for (i = b; i--;) {
		b = 0;

		// a is yc.length.
		for (j = a + i; j > i;) {

			// Current sum of products at this digit position, plus carry.
			b = c[j] + yc[i] * xc[j - i - 1] + b;
			c[j--] = b % 10;

			// carry
			b = b / 10 | 0;
		}

		c[j] = b;
	}

	// Increment result exponent if there is a final carry, otherwise remove leading zero.
	if (b) ++y.e;
	else c.shift();

	// Remove trailing zeros.
	for (i = c.length; !c[--i];) c.pop();
	y.c = c;

	return y;
};


/*
 * Return a string representing the value of this Big in exponential notation rounded to dp fixed
 * decimal places using rounding mode rm, or Big.RM if rm is not specified.
 *
 * dp? {number} Decimal places: integer, 0 to MAX_DP inclusive.
 * rm? {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 */
P.toExponential = function(dp, rm) {
	var x = this,
		n = x.c[0];

	if (dp !== UNDEFINED) {
		if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
			throw Error(INVALID_DP);
		}
		x = round(new x.constructor(x), ++dp, rm);
		for (; x.c.length < dp;) x.c.push(0);
	}

	return stringify(x, true, !!n);
};


/*
 * Return a string representing the value of this Big in normal notation rounded to dp fixed
 * decimal places using rounding mode rm, or Big.RM if rm is not specified.
 *
 * dp? {number} Decimal places: integer, 0 to MAX_DP inclusive.
 * rm? {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 *
 * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
 * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
 */
P.toFixed = function(dp, rm) {
	var x = this,
		n = x.c[0];

	if (dp !== UNDEFINED) {
		if (dp !== ~~dp || dp < 0 || dp > MAX_DP) {
			throw Error(INVALID_DP);
		}
		x = round(new x.constructor(x), dp + x.e + 1, rm);

		// x.e may have changed if the value is rounded up.
		for (dp = dp + x.e + 1; x.c.length < dp;) x.c.push(0);
	}

	return stringify(x, false, !!n);
};


/*
 * Return a string representing the value of this Big.
 * Return exponential notation if this Big has a positive exponent equal to or greater than
 * Big.PE, or a negative exponent equal to or less than Big.NE.
 * Omit the sign for negative zero.
 */
P.toJSON = P.toString = function() {
	var x = this,
		Big = x.constructor;
	return stringify(x, x.e <= Big.NE || x.e >= Big.PE, !!x.c[0]);
};


/*
 * Return the value of this Big as a primitve number.
 */
P.toNumber = function() {
	var n = Number(stringify(this, true, true));
	if (this.constructor.strict === true && !this.eq(n.toString())) {
		throw Error(NAME + 'Imprecise conversion');
	}
	return n;
};


/*
 * Return a string representing the value of this Big rounded to sd significant digits using
 * rounding mode rm, or Big.RM if rm is not specified.
 * Use exponential notation if sd is less than the number of digits necessary to represent
 * the integer part of the value in normal notation.
 *
 * sd {number} Significant digits: integer, 1 to MAX_DP inclusive.
 * rm? {number} Rounding mode: 0 (down), 1 (half-up), 2 (half-even) or 3 (up).
 */
P.toPrecision = function(sd, rm) {
	var x = this,
		Big = x.constructor,
		n = x.c[0];

	if (sd !== UNDEFINED) {
		if (sd !== ~~sd || sd < 1 || sd > MAX_DP) {
			throw Error(INVALID + 'precision');
		}
		x = round(new Big(x), sd, rm);
		for (; x.c.length < sd;) x.c.push(0);
	}

	return stringify(x, sd <= x.e || x.e <= Big.NE || x.e >= Big.PE, !!n);
};


/*
 * Return a string representing the value of this Big.
 * Return exponential notation if this Big has a positive exponent equal to or greater than
 * Big.PE, or a negative exponent equal to or less than Big.NE.
 * Include the sign for negative zero.
 */
P.valueOf = function() {
	var x = this,
		Big = x.constructor;
	if (Big.strict === true) {
		throw Error(NAME + 'valueOf disallowed');
	}
	return stringify(x, x.e <= Big.NE || x.e >= Big.PE, true);
};


// Export


Big = _Big_();


export default Big;

  

  

标签:return,big,yc,value,js,Big,xc,数学计算,dp
From: https://www.cnblogs.com/surfaces/p/17724383.html

相关文章

  • JS深入学习笔记 - 第三章.变量作用域与内存
    1.原始值和引用值ECMScript变量包含两种不同类型是数据:原始值和引用值。原始值:最简单的数据。有6中原始值:Undefined、Null、Boolean、Number、String和Symbol。原始值是按值访问。引用值:由多个值构成的对象。三大引用类型:1.object2.Array类型3.Function类型。引用值是保存在......
  • 03-JSX-编码规范
    JSX书写规范JSX的顶层只能有一个根元素错误写法:render(){return(<p></p><div></div>)}正确写法:render(){return(<div><p>BNTang</p></div>)}J......
  • 02-JSX-灵活性
    JSX灵活性JSX使我们在JS中拥有了直接编写XML代码的能力所以在JS中能干的事,在JSX中都能干例如有如下这么一个需求:通过按钮控制界面上p标签的显示和隐藏:<!doctypehtml><htmllang="en"><head><metacharset="UTF-8"><metaname="viewport"......
  • 01-JSX嵌入内容
    JSX嵌入表达式只要是合法的表达式,都可以嵌入到JSX中任何合法的JS表达式都可以嵌入到{}中<!doctypehtml><htmllang="en"><head><metacharset="UTF-8"><metaname="viewport"content="width=device-width,u......
  • 解决:npm ERR! [email protected] install: `node install.js`
    https://cdn.npmmirror.com/binaries/chromedriver/2.27/chromedriver_win32.zip可以点击这个链接直接下载。删掉项目中的node_modules文件夹。根据自己的下载地址,安装依赖。npminstallchromedriver--chromedriver_filepath=文件地址注意:不需要解压缩。npminstall......
  • 一文彻底搞懂JS作用域
    JavaScript的作用域是一个非常基础且重要的概念,对于初学者来说,经常会觉得有些混乱搞不清楚。本文会详细介绍JavaScript作用域,包括全局作用域、函数作用域和块级作用域,以及ES6+新增的let、const和blockscope等特性,让你彻底搞懂作用域。1.JavaScript作用域简介在JavaScript中,作......
  • Vue.js 3.0 promise的运用
    ......
  • maven和nodejs环境安装
    1.maven安装  wgethttps://dlcdn.apache.org/maven/maven-3/3.9.4/binaries/apache-maven-3.9.4-bin.tar.gz--no-check-certificate  参考连接:https://blog.csdn.net/yao583224426/article/details/1317396842.Node安装  nodejs官方:http://nodejs.cn/  cd/opt#......
  • 基于transbigdata包获取线路和站点的邻接表及shp文件
    importpandasaspdimportnumpyasnpimportgeopandasasgpdimporttransbigdataastbdimportjsonimportcsvimportnetworkxasnx#输入需要的城市place='深圳'#输入需要的线路line_range=[14,15,16,20]#遍历线路列表,挨个处理forxinline_range:try:......
  • 通过 BigQuery 中的 11 个新链增强 Google Cloud 的区块链数据服务
    【CloudAce 是GoogleCloud全球战略合作伙伴,在亚太地区、欧洲、南北美洲和非洲拥有二十多个办公室。CloudAce在谷歌专业领域认证及专业知识目前排名全球第一位,并连续多次获得GoogleCloud各类奖项。作为谷歌云托管服务商,我们提供谷歌云、谷歌地图、谷歌办公套件、谷歌云认......