We have a grid with $N$ rows and $M$ columns. We denote by $(i,j)$ the cell in the $i$-th row from the top and $j$-th column from the left. You are given integer sequences $A=(A_1,A_2,\dots,A_K)$ and $B=(B_1,B_2,\dots,B_L)$ of lengths $K$ and $L$, respectively. Find the sum, modulo $998244353$, of the answers to the following question over all integer pairs $(i,j)$ such that $1 \le i \le K$ and $1 \le j \le L$.Problem Statement
Constraints
定义 \(dp_{i,j}\) 为到达 \((i,j)\) 的方案数,那么 \(dp_{i,j}=dp_{i-1,j-1}+dp_{i-1,j}+dp_{i-1,j+1}\)。
看似可以多项式快速幂优化,但是会发现有边界问题。
如何解决边界问题?对称一下,使 \(dp_{n+1-i}=-dp_i\),然后卷积的时候就可以把 \(j\le N\) 的限制给去掉。
\(x>0\) 的限制怎么去? 用 \(2n+2\) 的循环卷积即可。
然后循环卷积快速幂就可以了。
原题也一样,循环卷积跑出来 \((1+x+x^{-1})^N\) 的系数卷上 \(A\) 数组就可以了。
#include<bits/stdc++.h>
using namespace std;
const int N=524288,P=998244353;
int n,m,k,a,b,rr[N],ans,f[N],g[N],h[N],p,l;
int read()
{
int s=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
int pown(int x,int y)
{
if(!y)
return 1;
int t=pown(x,y>>1);
if(y&1)
return 1LL*t*t%P*x%P;
return 1LL*t*t%P;
}
void ntt(int a[],int op)
{
for(int i=1;i<N;i++)
if(rr[i]<i)
swap(a[i],a[rr[i]]);
for(int md=1;md<N;md<<=1)
{
int g=pown(op? 3:332748118,(P-1)/(md<<1));
for(int i=0;i<N;i+=md<<1)
{
int pw=1;
for(int j=0;j<md;j++,pw=1LL*g*pw%P)
{
int x=a[i+j+md]*1LL*pw%P;
a[i+j+md]=(a[i+j]+P-x)%P;
(a[i+j]+=x)%=P;
}
}
}
if(!op)
{
int ivN=pown(N,P-2);
for(int i=0;i<N;i++)
a[i]=1LL*a[i]*ivN%P;
}
}
void mul(int a[],int b[])
{
ntt(a,1);
ntt(b,1);
for(int i=0;i<N;i++)
a[i]=1LL*a[i]*b[i]%P;
ntt(a,0);
for(int i=p;i<N;i++)
(a[i%p]+=a[i])%=P,a[i]=0;
}
void solve(int x)
{
if(x==1)
return;
if(x&1)
{
solve(x-1);
memcpy(h,f,sizeof(h));
for(int i=0;i<p;i++)
f[i]=(1LL*h[i]+h[(i+p-1)%p]+h[(i+1)%p])%P;
}
else
{
solve(x>>1);
memcpy(h,f,sizeof(h));
mul(f,h);
}
}
int main()
{
n=read(),m=read(),k=read(),l=read();
p=2*m+2;
for(int i=0;i<N;i++)
rr[i]=rr[i>>1]>>1|(i&1)*(N/2);
for(int i=1;i<=k;i++)
a=read(),g[a]++,(g[2*m-a+2]+=P-1)%=P;
if(n^1)
{
f[0]=f[p-1]=f[1]=1;
solve(n-1);
mul(g,f);
}
for(int i=1;i<=l;i++)
(ans+=g[read()])%=P;
printf("%d",ans);
}
标签:le,Simple,int,ch,read,卷积,ABC309Ex,Problem,dp
From: https://www.cnblogs.com/mekoszc/p/17723218.html