这属于Hbase的一个例子,不过Hbase的例子有点问题,需要更改下。
其实我感觉Hbase属于一个BigTable,感觉和xls真的很像,闲话不说了,上code才是王道。
Java代码
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.log4j.Logger;
/**
* Sample Uploader MapReduce
* <p>
* This is EXAMPLE code. You will need to change it to work for your context.
* <p>
* Uses {@link TableReducer} to put the data into HBase. Change the InputFormat
* to suit your data. In this example, we are importing a CSV file.
* <p>
* <pre>row,family,qualifier,value</pre>
* <p>
* The table and columnfamily we're to insert into must preexist.
* <p>
* There is no reducer in this example as it is not necessary and adds
* significant overhead. If you need to do any massaging of data before
* inserting into HBase, you can do this in the map as well.
* <p>Do the following to start the MR job:
* <pre>
* ./bin/hadoop org.apache.hadoop.hbase.mapreduce.SampleUploader /tmp/input.csv TABLE_NAME
* </pre>
* <p>
* This code was written against HBase 0.21 trunk.
*/
public class SampleUploader {
public static Logger loger = Wloger.loger;
private static final String NAME = "SampleUploader";
static class Uploader
extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
private long checkpoint = 100;
private long count = 0;
@Override
public void map(LongWritable key, Text line, Context context)
throws IOException {
// Input is a CSV file
// Each map() is a single line, where the key is the line number
// Each line is comma-delimited; row,family,qualifier,value
// Split CSV line
String [] values = line.toString().split(",");
if(values.length != 4) {
return;
}
// Extract each value
byte [] row = Bytes.toBytes(values[0]);
byte [] family = Bytes.toBytes(values[1]);
byte [] qualifier = Bytes.toBytes(values[2]);
byte [] value = Bytes.toBytes(values[3]);
loger.info(values[0]+":"+values[1]+":"+values[2]+":"+values[3]);
// Create Put
Put put = new Put(row);
put.add(family, qualifier, value);
// Uncomment below to disable WAL. This will improve performance but means
// you will experience data loss in the case of a RegionServer crash.
// put.setWriteToWAL(false);
try {
context.write(new ImmutableBytesWritable(row), put);
} catch (InterruptedException e) {
e.printStackTrace();
loger.error("write到hbase 异常:",e);
}
// Set status every checkpoint lines
if(++count % checkpoint == 0) {
context.setStatus("Emitting Put " + count);
}
}
}
/**
* Job configuration.
*/
public static Job configureJob(Configuration conf, String [] args)
throws IOException {
Path inputPath = new Path(args[0]);
String tableName = args[1];
Job job = new Job(conf, NAME + "_" + tableName);
job.setJarByClass(Uploader.class);
FileInputFormat.setInputPaths(job, inputPath);
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(Uploader.class);
// No reducers. Just write straight to table. Call initTableReducerJob
// because it sets up the TableOutputFormat.
loger.error("TableName:"+tableName);
TableMapReduceUtil.initTableReducerJob(tableName, null, job);
job.setNumReduceTasks(0);
return job;
}
/**
* Main entry point.
*
* @param args The command line parameters.
* @throws Exception When running the job fails.
*/
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if(otherArgs.length != 2) {
System.err.println("Wrong number of arguments: " + otherArgs.length);
System.err.println("Usage: " + NAME + " <input> <tablename>");
System.exit(-1);
}
Job job = configureJob(conf, otherArgs);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Map/Reduce的输入/输出就不说了,不懂的,可以看hadoop专栏去.
[这个任务调用和上一个IndexBuilder有些不同哦,具体的可以参照上一个例子,相同点:都只有map任务]
xls内容如下:
key3,family1,column1,xls1
key3,family1,column2,xls11
key4,family1,column1,xls2
key4,family1,column2,xls12
这是csv格式的,如果是xls是可以导为csv格式的,具体可以google一下.
运行命令如下:
bin/hadoop jar SampleUploader.jar SampleUploader /tmp/input.csv 'table1'
这里的'table1'是上一遍IndexBuilder的时候建的表,表就使用上一张表[懒]
注意,这里使用的文件需要提交到hdfs上,否则会提示找不到,因为map/reduce是使用的是hdfs的文件系统.